При разработке материалов для реконструкции костных тканей стремятся достичь близости химического и фазового состава материала к составу ткани, а также необходимых химических свойств, в частности, для обеспечения требуемой кинетики резорбции жидкостями организма. Возможно, наиболее физиологически важными для ГА являются анионные замещения карбонат-группами и катионные - ионами магния. Карбонат-группы создают решеточные искажения и дефекты решетки в структуре ГА, влияющие на биологическую активность. Магний всегда присутствует в примесных количествах в эмали, дентине и костной ткани, влияя на развитие остеодистрофии [190,191]. Апластические нарушения костной ткани сопровождаются понижением содержания в ней магния [191]. В связи с эти, важной задачей является получение керамических материалов на основе ГА, содержащих как карбонат-группы, так и ионы магния. Задача осложняется, однако, тем, что магний, даже в малых количествах, дестабилизирует структуру ГА, способствуя кристаллизации -ТКФ [133,153]. Карбонат-ионы удаляются из КГА при температурах существенно ниже температуры, необходимой для спекания ГА-керамики. Относительно мало известно о термической стабильности КГА и магний-замещенного КГА. Проводились эксперименты по изучению влияния состава газовой среды, в том числе азота, углекислого газа, водяных паров, кислорода на термическое разложение КГА. В работе [192] установлено, что состав газовой среды оказывает значительное влияние на кристаллизацию и полиморфизм КГА, полученного осаждением из растворов. Температура кристаллизации апатита снижается с повышением содержания СО32--групп. Добавление в состав газовой среды - углекислого газа, с 3% водяного пара, повышает температуру кристаллизации (с 900 до 11000С) и температуру полиморфного превращения КГА в ТКФ с 1300 до 15000С. Установлено влияние типа замещения (А- или Б-тип) в КГА на его термическую стабильность [193].
Было изучено термическое разложение КГА и магний-содержащих КГА, синтезированных разными способами в зависимости от температуры [162,165]. Исследования проводили в равновесных условиях с применением метода Фурье ИК-спектроскопии конденсата газовой фазы. Выполняли также ИК-спектроскопию твердой фазы после термообработок, термогравиметрический и рентгеновский фазовый анализ.
Замещенные гидроксиапатиты синтезировали двумя способами: осаждением из растворов нитрата Са (Mg), однозамещенного фосфата аммония, карбоната аммония и аммиака (1) и твердо-жидкофазным взаимодействием оксидов Са (Mg) с однозамещенным фосфатом аммония и карбонатом кальция в присутствии дозированных количеств воды (2). Фурье ИК-анализ конденсата паровой фазы изучали в вакууме с использованием ячейки Кнудсена для испарения и покрытой золотом подложки для конденсации продуктов термического разложения при температуре 12 К [194,195]. В качестве изолирующего матричного газа использовали аргон высокой чистоты. Составы исследованных апатитов представлены в таблице 11.
На рис. 26 приведены, в качестве примера, дифрактограммы образца 7 после термических обработок при температурах 300, 850, 900, 950 и 11000С. Как следует из анализа дифрактограмм, КГА, синтезированный твердо-жидкофазным взаимодействием, сохраняет все характерные рефлексы КГА даже после термообработки при 11000С. В продукте синтеза присутствует карбонат кальция в качестве примесной фазы, вплоть до температуры термообработки 9000С. С повышением температуры карбонат кальция разлагается, но появляются рефлексы от СаО, причиной возникновения которого может являться как частичное разложение КГА, так и разложение СаСО3. Косвенно, появление СаО свидетельствует о том, что исходный КГА был смешанного АБ-типа с отношением Са/Р более 1,67. В случае КГА А-типа продуктами разложения являлись бы ТКФ и ТеКФ.
На рис. 27 приведены ИК спектры для образца 7 после разных температур термообработки. Полоса при 3570 см-1, соответствующая колебаниям групп ОН-, исчезает при 11000С. Полосы в области 1650-1300 см-1, соответствующие 3 колебательной моде карбонат-групп, и пик при 873 см-1, отвечающий 2-моде колебаний этих групп, претерпевают существенные изменения, указывающие на термическое разложение КГА с выделением карбонат-групп. Качественно аналогичные изменения в ИК спектрах с температурой выявлены и для других образцов КГА. Введение магния (образцы 4-6) в состав КГА способствует дестабилизации и термическому разложению КГА. Наиболее интересными представляются данные, полученные методом Фурье ИК-спектроскопии конденсата паровой фазы.
На рис. 28 приведены ИК спектры конденсата (показаны только полосы поглощения от молекул оксидов углерода), полученного от образцов 1-3 и 6 при различных температурах, до 15000С. Рассчитанные с помощью программы Origin 5 площади пиков, соответствующих колебаниям молекул СО (2149 и 2138 см-1) и СО2 (2345 и 2339 см-1), в зависимости от температуры показаны на рис. 29 и 30. Как можно видеть, выделение СО увеличивается непрерывно с температурой, тогда как интенсивность выделения СО2 имеет максимум. Положение температуры максимума зависит от метода синтеза и от количества карбонат-групп. Наименее стабильным является магний-содержащий КГА. С повышением содержания СО32- температура максимума повышается, что может являться следствием предпочтительного заполнения позиций типа Б в структуре апатита. Изменение соотношения СО2/СО в паровой фазе может иметь важное технологическое значение. Например, при типичной температуре спекания ГА-керамики 12000С соотношения площадей пиков для образцов КГА 1, 2 и 3 составляют:
Концентрирование карбамида
Карбамид (мочевина) СО(NH2)2 представляет
собой амид карбаминовой кислоты.
Карбамид выпускается в виде гранул или
кристаллов. В данном производстве карбамид выпускается в виде ...
Физико-химические методы анализа веществ
В практической
деятельности часто возникает необходимость идентификации (обнаружения) того или
иного вещества, а также количественной оценки (измерения) его содержания.
Химическая
иденти ...
Cложные эфиры
...