Термическая стабильность и особенности спекания фосфатно-кальциевой керамики
Дипломы, курсовые и прочее / Биокерамика на основе фосфатов кальция / Дипломы, курсовые и прочее / Биокерамика на основе фосфатов кальция / Термическая стабильность и особенности спекания фосфатно-кальциевой керамики Термическая стабильность и особенности спекания фосфатно-кальциевой керамики
Страница 5

Размер зёрен в спечённой керамике зависит от температуры обжига и состава исходных смесей. Для составов, содержащих до 2% ФА, средний размер кристаллов возрастает от 1,5-2 до 10 мкм, при увеличении температуры с 1250 до 1400˚С, соответственно. Образцы, содержащие 10% ФА, отличаются более низкой скоростью роста кристаллов при спекании в интервале 1300-1350˚С (размер кристаллов возрастает от 3,3 до 6,5 мкм). При достижении температуры 1400˚С скорость роста зёрен в процессе рекристаллизации возрастает, средний размер кристаллов достигает 10 мкм.

Установлены зависимости механических свойств (прочность при изгибе и микротвёрдость) от температуры обжига в интервале 1150-1400˚С. Показано (рис. 21), что с увеличением температуры с 1150 до 1400˚С прочность повышается и достигает максимальных значений (95-120 МПа) при 1400˚С для составов, содержащих до 1% ФА. Керамика составов 2 и 10% ФА имеет меньшую прочность: при температуре спекания 1150˚С керамика имеет минимальное значение прочности 5-20 МПа. В интервале температур обжига 1200-1400˚С происходит возрастание прочности с 40 МПа до 55-60 МПа, соответственно. Это связано с образованием диффузионной пористости при спекании материалов, обогащённых ФА, а также с повышением содержания ТКФ, снижающего прочность керамики, в образцах по мере увеличения количества ФА.

Определены значения трещиностойкости (разброс значений – в пределах 10%) для исследуемых составов в интервале температур обжига (см. табл. 9). Трещиностойкость образцов ГА-ФА, как и трещиностойкость ГА-керамики, имеет тенденцию к некоторому возрастанию с повышением температуры обжига, что обусловлено большей плотностью высокообожжённых материалов. Введение ФА практически не влияет на трещиностойкость (в пределах ошибки её измерения). Разрушение всех материалов – интеркристаллитное, происходящее в результате распространения магистральной трещины по границам зёрен, но с присутствием некоторой доли транскристаллитного скола, особенно на составах с малым содержанием ФА (рис. 22). Можно отметить, что существенное уменьшение размера зерна с увеличением содержания ФА практически не сказывается на значениях критического коэффициента интенсивности напряжений К1с.

Следует отметить, что с увеличением количества ФА от 0 до 10 масс. %, растут значения общей пористости от 21 до 25 % и удельной поверхности (БЭТ) от 0,31 до 0,8 м2/г, соответственно, спеченной при температуре 1200 0С керамики. Последнее связано с увеличением доли микропор диаметром 20-450 Ǻ.

На рис. 23 показаны ИК-спектры механической смеси 90% ГА – 10% ФА и смеси, спеченной при температуре 12000С). Различия ИК-спектров в области 600 – 800 см-1 свидетельствуют о формировании в процессе спекания твёрдого раствора: положение и интенсивность полосы при 631 см-1 для ГА зависит от степени замещения ОН- фтором. При содержании фтора около 10% данная полоса смещается к 637 см-1, что характерно для спектра ФГА.

В табл. 10 приведены данные лазерной масс-спектрометрии по анализу исходных порошков (ГА и смесь 90% ГА–10% ФА) и керамики тех же составов, спечённой при 1200°С. Процесс спекания не влияет значительно на состав материала, т.е. фтор не улетучивается в ходе спекания. Микроструктура образцов керамики с 10%ФА, спеченной при 1200 и 13000С, показана на рис. 24. Даже при высоком увеличении не наблюдалось значительной разницы в атомном контрасте в образцах, исследованных в режиме обратного рассеяния электронов, что указывает на высокую гомогенность их состава. Открытая пористость образцов снижалась с 25,2 до 1,4% в этом интервале температур. Определенное методом рентгеновского энерго-дисперсионного анализа содержание фтора в образцах было 0,65 масс.%, что соответствует данным лазерной масс-спектрометрии. Анализ, выполненный по 20 точкам в разных участках образца, дал разброс результатов от 1,08 до 0,41 масс.%, среднее значение близко к данным лазерной масс-спектрометрии. Не было обнаружено точек, свободных от содержания фтора, даже при фокусировке электронного пучка с малой дивергенцией. Эти данные подтверждают образование твердого раствора в изученной системе. Таким образом, эксперименты по термической обработке смесей тонкодисперсных порошков ГА и ФА продемонстрировали возможность получение ФГА керамики.

Варьируя температуру спекания смесей ГА – (0-10) масс. % ФА в интервале 1180 – 1250 0С, согласно данным, приведенным на рис. 19 и 20, изготовлены образцы керамики с примерно одинаковой пористостью в диапазоне 25 – 28%. Шероховатость поверхности Rа образцов составила 0,45 – 0,61 мкм, размер пор 0,4 – 1,0 мкм (³ 60%) и 3-10 (£ 40%). Образцы испытывали in vitro на остеобласто-подобных клетках MG-63 остеосаркомы человека (совместно с Университетом Упсалы, Швеция). Применяли стандартный МТТ-тест, культивируя 15000 клеток на образец. В качестве контроля использовали полистирол. Результаты представлены на рис. 25. Из приведенных данных следует, что плотность живых клеток возрастает с временем культивирования, причем введение до 10 масс. % ФА в ГА-керамику, по-крайней мере, не ухудшает жизнеспособности клеток. Керамика ГА с ФА до 10 масс. % изученных составов может быть использована в условиях, требующих повышенную устойчивость к растворению тканевыми жидкостями организма. В частности, такая керамика была использована в качестве мишеней для радиочастотного ионно-стимулированного нанесения покрытий на титановые имплантаты.

Страницы: 1 2 3 4 5 6 7

Смотрите также

Тяжелые металлы
Диагноз массового отравления жителей Рима свинцом поставлен учеными спустя две тысячи лет. Раскопки показали, что древние римляне пользовались водопроводной системой и посудой из свинца. Сви ...

Алкалоиды
...

Полиэфирсульфоны
Полиэфирсульфоны получают поликонденсацией щелочных солей дифенолов с ароматическими дигалогенидами, в которых атомы галогена активированы электроноакцепторной группой – SO2 – . Процесс проводят ...