При исследовании фазового состава в зависимости от температуры обжига установлено, что во всех образцах керамики без добавок основной фазой является гидроксиапатит. С увеличением температуры от 1100 до 1350оС основные дифракционные линии, соответствующие ГА, смещаются в сторону больших углов, а величина межплоскостных расстояний уменьшается, что свидетельствует, по-видимому, о процессе дегидратации и разупорядоченности структуры гидроксиапатита. Фазовый состав керамики, спеченной при 1100оС, отвечает полностью фазе ГА (рис.15а). В интервале температур 1200-1350оС отмечено появление небольшого количества (3-5%) 3CaO•P2O5 и 4CaO•P2O5 (1350оС) (рис.15б).
Микроскопические исследования этих же образцов в проходящем свете (иммерсионные препараты) подтверждают данные рентгенофазового анализа. Измеренные оптические константы (nо=1,651, ne=1,644, no-ne=0,007) полностью соответствуют соединению ГА стехиометрического состава. Кристаллы ГА имели ярко выраженные цвета интерференции, характерные для кристаллов гексагональной сингонии. Эти результаты свидетельствуют о высокой термической стабильности исходного ГА. На дифрактограммах керамики с добавкой Na3PO4, помимо линий ГА, имеются линии соединения типа -NaСаPO4 с характерными дифракционными отражениями (d,10-1нм=3,83; 3,80; 2,74; 2,70; 2,66; 2,20), и рефлексы, соответствующие следам CaO (рис. 16). Следует отметить, что отражения (2,20; 2,66; 3,80, остальные перекрываются дифракционными максимумами ГА), соответствующие -NaСаPO4 , становится более четкими, их интенсивность возрастает как с увеличением количества добавки, так и с ростом температуры (рис.16б), что свидетельствует, очевидно, о повышении степени совершенства кристаллов. Эта кристаллическая фаза обнаружена также при изучении под микроскопом (проходящий свет) в иммерсионных препаратах керамики с 2% Na3PO4 после спекания при 1350оС. Она анизотропна и имеет показатели преломления: np=1,518 и ng=1,564, т.е. значительно ниже, чем ГА. Эти новообразования расположены и между кристаллами ГА в виде отдельных округлых и призматических частиц размером до 3мкм и тонких прослоек толщиной менее 1 мкм, и соизмеримы с шириной границ кристаллов. Сами зерна ГА имеют частично оплавленные края. Следовательно, предположение о прохождении спекания с участием жидкой фазы в материалах системы Ca10(PO4)6(OH)2 -Na3PO4 имеет косвенное подтверждение.
Изменение среднего размера кристаллов в керамике, в зависимости от температуры спекания и количества добавки Na3PO4, приведены на рис. 17 и в табл. 8. С увеличением температуры спекания от 1100 до 1350оС средний размер кристаллов возрастает в 12-17 раз. В интервале температур 1100-1200оС для образцов без добавки и с добавкой 1 и 2% Na3PO4 наблюдается линейное увеличение размеров кристаллов с ростом температуры обжига: от менее 0,5 до 2,2 мкм; от 0,7 до 3,1 мкм и от 0,9 до 3,5 мкм соответственно. При нагревании образцов ГА от 1200 до 1350оС происходит увеличение среднего размера кристаллов от 2,2 до 8,5 мкм. Рост кристаллов керамики с добавкой Na3PO4 происходит интенсивнее как с увеличением ее концентрации, так и температуры обжига. Кристаллы керамики состава 3 имеют средний размер 3,5 мкм при 1200оС и 10,9 мкм при 1350оС. Следует отметить изменения значений максимального и минимального размера кристаллов (табл. 8). Структура керамики с плотностью до 92,4-97,7% после спекания при 1200оС характеризуется мелкими кристаллами изометричной формы со средним размером 2,2-3,5 мкм, причем имеет место достаточно большой разброс размеров (для каждого состава), который увеличивается в соответствии с количеством Na3PO4.
После спекания при 1250оС керамика ГА имеет плотность 96,8%, при этом максимальный размер кристаллов достигает 7,9 мкм, а средний составляет 3,2 мкм. В керамике модифицированных составов с 1 и 2% Na3PO4, имеющей плотность 97,2% и 98,1%, максимальный размер достигает 9,0 мкм и 12,0 мкм, а средний размер зерен практически одинаков и составляет 4,1-4,8 мкм. По-видимому, происходит рекристаллизация, активируемая жидкой фазой. В интервале температур 1300-1350оС рекристаллизация интенсифицируется. Форма кристаллов изменяется от изометричной до призматической, при этом структура отличается неравномерным распределением кристаллов по размерам.
На рис. 18 показана зависимость прочности материалов в зависимости от температуры спекания в интервале 1100-1350оС. С увеличением температуры от 1100 до 1200оС прочность повышается и достигает максимальных значений (60-95 МПа) при 1200оС, а затем снижается. Прочность керамики без добавки нарастает медленнее с температурой спекания и достигает лишь 65 МПа при 1250оС. Это связано со сравнительно замедленным уплотнением таких образцов. Прочность составов с добавкой Na3PO4 более высокая и в интервале температур обжига 1100-1200оС возрастает до 85-95 МПа, причем, с увеличением концентрации добавки повышаются значения прочности. Это связано, вероятно, как с лучшим уплотнением модифицированных материалов, так и упрочняющим действием фазы (- NaСаPO4). Термообработка при 1250-1350оС приводит к снижению прочности образцов до практически одинаковых значений 55-60 МПа, что связано, по-видимому, с ростом кристаллов.
Химические элементы - токсиканты атмосферы и воды
Развитие промышленности неразрывно связано с
расширением круга используемых химических веществ. Увеличение объемов
применяемых
пестицидов, удобрений и других химикатов - характерная ...
Жизнь и деятельность Д.И. Менделеева
...
Источники возбуждения и атомизации в спектральном анализе
Атомизацию, как источник возбуждения, используют в атомно-адсорбционной
спектроскопии. Существует много способов атомизации соединений , осуществляемых
в большинстве случаев за счет тепловой ...