, (3.114)
откуда
и
. (3.115)
Формулы (3.112) и (3.115) практически дают один и тот же результат, поскольку классическая амплитуда А0
– это максимальное отклонение осциллятора от положения равновесия, тогда как квадратичная “амплитуда”
усреднена по всем положениям осциллятора, а понятие точной траектории и предельного отклонения не имеет смысла в квантовой механике.
Можно показать, что соответствие классической амплитуды и квантово-механического среднеквадратичного отклонения сохраняется и в других состояниях осциллятора, а именно:
и
(3.120)
(в квазиклассическом подходе) (в квантовомеханическом подходе)
3.5.18.
Среднеквадратичные амплитуды играют важную роль в экспериментах, связанных с определением равновесных положений ядер в молекулах, например, в электронографии или в рентгеноструктурном анализе. Они также позволяют на основе опытных колебательных спектров (инфракрасного поглощения и комбинационного рассеяния) определить пределы изменения молекулярных “размеров” за счет колебательных деформаций ядерного остова молекулы.
3.6. Сравнение свойств “ящика”, “ротатора” и осциллятора.
3.6.1.
Три рассмотренные модели простейших одномерных движений в ограниченном пространстве позволяют проследить некоторые общие качественные закономерности, касающиеся состояний и уровней квантово-механических систем. Они наглядно проявляются при сопоставлении энергетических диаграмм и графиков волновых функций “частицы в ящике”, “гармонического осциллятора” и “плоского ротатора”.
3.6.2.
В первом случае потенциальная энергия нулевая на выделенном интервале, и, как говорят, потенциальная “яма” имеет прямоугольную форму. Во втором случае потенциальная энергия изменяется квадратично при отклонении от равновесия и говорят о параболической форме потенциальной “ямы”. Наконец, ротатор отсутствием потенциальной энергии напоминает “ящик”. Отсюда, хотя способы нумераций уровней и отличаются, схемы квантования энергии у этих систем одинаковы – уровни расходятся с возрастанием квантового числа.
У гармонического осциллятора квантование энергии уникально – уровни эквидистантны. Благодаря этому при взаимодействии с квантами света частота поглощаемого излучения совпадает с собственной частотой молекулярного осциллятора, например, колеблющихся атомов, связанных химической связью.
Таким образом, квантование полной энергии системы определяется потенциальной функцией.
3.6.3.
В разделе 3.2.5. мы связали вырождение уровней ротатора с равноправием двух направлений вращения вокруг оси. Можно высказать еще и более общее утверждение, связывающее наличие вырождения с порядком вращательной оси системы. Плоский ротатор – это система с осью вращения бесконечного порядка. Далее будет показано, что вырожденные уровни появляются у систем, имеющих ось третьего порядка и выше.
В целом же, нам удалось приобрести некоторые необходимые навыки в решении простейших задач квантовой механики.
Физиологическое значение висмута
Не смотря на то, что висмут относится к категории
тяжелых металлов, он является умеренно токсичным элементом. Некоторые источники
даже называют висмут "самым безобидным" тяжелым металлом. ...
Получение, свойства и применение амидо-аммониевой соли малеопимаровой кислоты на основе малеинизированной канифоли
Республика Беларусь
располагает обширной сырьевой базой для развития лесохимической промышленности.
Одним из видов такого сырья является канифоль, которую получают из живицы путем
отгонки с ...
Серебро
47
Ag
1 18 18 8 2
СЕРЕБРО
107,868
4d105s1
...