Кооперативные межмакромолекулярные реакции с участием лигносульфонатов
Учим химию / Учим химию / Кооперативные межмакромолекулярные реакции с участием лигносульфонатов Кооперативные межмакромолекулярные реакции с участием лигносульфонатов
Страница 1

Известно, что в результате кооперативных реакций между линейными синтетическими полиэлектролитами образуются полиэлектролитные солевые комплексы. Описаны также полиэлектролитные комплексы, в состав которых включены макромолекулы модельных биологических и природных полиэлектролитов, таких как полипептиды, полисахариды, белки, нуклеиновые кислоты [1 - 4]. В последние годы обнаружено, что лигносульфонаты — водорастворимые производные природного полимера лигнина — в растворах взаимодействуют с синтетическими поликатионами, образуя полимерные комплексы [5,6]. Однако собственно реакции, приводящие к образованию таких комплексов, а также строение и свойства последних практически не исследованы.

В данной работе изучено взаимодействие в водных растворах лигносульфонатов со слабым полимерным основанием поли-М,М-диметиламино-этилметакрилатом (ПА) с позиций, развитых при изучении кооперативных реакций между полиэлектролитами. Интерес к исследованию такого рода в значительной степени обусловлен широкой распространенностью и доступностью лигносульфонатов, являющихся отходами целлюлозно-бумажного производства.

В качестве исходного лигносульфоната использовали сульфитно-дрожжевую бражку Слокского ЦБК. Лигносульфонаты фракционировали методом препаративной ГПХ на Сефадексе G-75. Превращение лигносульфоновых кислот в солевую форму осуществляли нейтрализацией 0,1 М NaOH. Полученные растворы лигносульфонатов натрия (JIC-Na) концентрировали в кристаллизаторах и высушивали в вакуум-эксикаторе над Р205 при комнатной температуре. Функциональные группы в образцах определяли принятыми в химии лигнина методами [7]. Элементный и функциональный составы, а также соответствующие полуэмпирические формулы ЛС-Na приведены в таблице. Условный грамм-эквивалент принимали равным массе структурного звена ЛС-Na, приходящегося на один атом серы, исходя из полуэмпирической формулы. Средневесовые молекулярные массы Mw фракций и исходного ЛС-Na определяли методом аналитической гель-фильтрации на смеси сефадексов G-200, G-100, G-75 (50: 25: 25 вес. % соответственно), используя в качестве элюента и растворителя 0,1 I NaCl. Приведенные в таблице молекулярные- массы образцов рассчитывали из уравнения [8]

где К - коэффициент распределения.

ПА получали радикальной полимеризацией соответствующего мономера по методике, описанной в работе [9]. Mw ПА, рассчитанный из данных светорассеяния, составлял 5 105.

Реакцию между полиэлектролитами проводили медленно приливая раствор ПА к раствору ЛС-Na при постоянном перемешивании. рН растворов полиэлектролитов и их смеси контролировали при помощи потенциометра рН-121 со стеклянным электродом в качестве измерительного. Точность измерений 0,05 ед. рН. Титрование вели в токе инертного газа при 293 К и постоянном перемешивании. Время установления постоянного значения рН ~2 мин. При обработке кривых потенциометрического титрования разбавлением раствора в процессе титрования пренебрегали.

Изучение реакции между макромолекулами лигносульфонатов и ПА проводили в разбавленных водных растворах. Лигносульфонаты характеризуются довольно широким ММР, поэтому нами были изучены реакции с участием отдельных фракций лигносульфонатов. Последние, являясь солями сильных лигносульфоновых кислот, ведут себя в водных растворах как сильные полиэлектролиты. В связи с этим в качестве химически комплементарного полимера было выбрано слабое полимерное полиоснование.

Рис. 1. Кривые потенциометрического титрования эквимоль-ных смесей ПА и JIC-Na: 1 - фракция IV, 2 - III, 3 - II, 4 -I, 5 - нефракционированный JTC-Na, 6 - фракция V, 7 - ПА. [JIC-Na] = [ПА] =0,0012 осново-моль/л; [НС1]=0,01 моль/л

Смешение растворов JIC-Na и ПА, как следовало ожидать, для реакций слабых полиоснований с полимерными анионами сопровождалось повышением рН раствора. На рис. 1 представлены кривые потенциометрического титрования эквимольных (в расчете на сульфо- и аминогруппы) смесей полиэлектролитов (кривые 1—6) и свободного ПА (кривая 7) соляной кислотой. Видно, что кривые титрования смесей различных фракций JIC-Na, а также нефракционированного JIC-Na с ПА лежат гораздо выше кривой титрования ПА. Это свидетельствует о том, что реакция между макромолекулами JIC-Na и ПА происходит по механизму электростатического взаимодействия между сульфогруппами JIC-Na и аминогруппами полиоснования и может быть представлена схемой

Согласно рис. 1, количество щелочи, выделяющейся при смешении растворов JIC-Na и свободного полимерного основания, тем больше, чем выше молекулярная масса ЛС-Na.

Страницы: 1 2 3 4

Смотрите также

Изучение химического состава снега
В эпоху научно-технической революции антропогенные воздействия на окружающую среду становятся интенсивными и масштабными. Серьезную опасность представляет усиливающиеся загрязнение природны ...

Обзор литературы
По своему химическому составу вода является соединением двух атомов водорода и одного атома кислорода. Однако, в естественных условиях в воде постоянно содержаться самые различные вещества и элемен ...

Синтез и исследование комплексов рения (IV) с некоторыми аминокислотами
Предложены методы синтеза комплексных соединений рения (IV) c некоторыми аминокислотами состава [К(LH)][ReХ6], (LH)2[ReХ6] и [ReL2Х4]H2O (L’–глицин-NH2-CH2-COOH; L-лейцин-((CH3 )2-CH-CH2-CH(N ...