Ряд процессов жидкофазного окисления углеводородов в настоящее время реализованы как крупнотоннажный производства, например СЖК [2], высших жирных спиртов и др. [3].
Изучения жидкофазного окисление насыщенных углеводородов оказалось весьма плодотворным для установления общих закономерностей процесса окисления. На примере окисления индивидуальных углеводородов и их смесей получены фундаментальные знания о механизме радикальных реакций [3,4-7].
Некоторые особенности процесса жидкофазного окисления парафиновых углеводородов.
Окисления парафиновых углеводородов хорошо изученный процесс [7,8,10-12].
Известно, что окисление парафиновых углеводородов молекулярным кислородом приводит к образованию большого число промежуточных и конечных кислородсодержащих продуктов: перекисей, спиртов, карбонильных соединений, кислот, эфиров, а также бифункциональных соединений.
Найден ряд катализаторов процесса окисления углеводородов, таких как, растворимые комплексы титана [9], хлорид платины [14], комплексы ванадия (5V) [15], Pd, Pt, Co, Fe нанесенные на носитель, например, на цеолита [16], система на основе Ti, Zr, V, Cr, Mo, W, Mn, Fe и имида [19], система из растворимых соединений кобальта и хрома [21], мультиоксиды металлов [23], алкилперокси- комплексы трехвалентного кобальта [25], смесь азотной кислоты и уксусного ангидрида [26], комплексы марганца и органических кислот содержащих ароматических фрагментов [29], комплексы металлов [30], SiO2 , AI2O3 , ZrO и другие на носителе [31] комплексы металлов, содержащую имидную группировку [32], система на основе Bi, V, Mo, Ag [33], Мn содержащий катализатор, нанесенный на молекулярный сита [34]. Известны каталитические системы ведущие процесс окислению углеводородов селективно [13,18,22,24,28].
К настоящему времени считается доказанным, что в случае окисления предельных углеводородов гидроперекиси единственные первичные промежуточные продукты.
Изучения строения образующихся при окислении гидроперекисей показало, что строение углеводородного радикала R в гидроперекиси R'OOH сохраняется таким же, как и в исходном углеводороде RH [3].
Образующиеся при окислении радикалы R'02 взаимодействует с молекулой исходного углеводорода, отрывая атом водорода и образуя гидроперекиси по реакции
При окислении разветвленных парафинов с двумя третичными связями С - Н в большом количестве были обнаружены дигидроперекиси. Окисление проводили при 115 — 120°С до глубины 5 -8 % (мол.) [3]. В начальный период окисления свободные радикалы образуются при взаимодействии исходного углеводорода с растворенным в нем кислородом
Радикал R* присоединят к себе молекулу кислорода и превращается в перекисный радикал RO2•, который далее отрывает атом водорода от молекулы углеводорода и образует гидроперекись и свободный радикал R•, продолжающий цепь. В процессе окисления накапливается гидроперекись, молекулы который сравнительно медленно распадаются на радикалы, например по реакции
Это приводит к увеличению скорости образования свободных радикалов. Процесс распада промежуточных гидроперекисей на радикалы представляет собой реакцию вырожденного разветвления цепей [3].
В целом механизм цепного окисления углеводородов может быть представлен следующим образом [41]:
Тяжелые металлы
Диагноз массового отравления жителей Рима
свинцом поставлен учеными спустя две тысячи лет. Раскопки показали, что древние
римляне пользовались водопроводной системой и посудой из свинца. Сви ...
Индуктивно-связанная плазма
Атомно-эмиссионная
спектроскопия с индуктивно связанной плазмой это весьма популятный, простой и
точный метод анализа. Суть его в том, что при возбуждении и ионизации с
последующим переходо ...
Химия в поисках альтернативных источников энергии
Неважно, когда на
Земле закончится нефть, - через пятьдесят, сто или двести лет. Ясно, что
источник энергии исчерпаем в принципе и, следовательно, ему рано или поздно
придётся искать альтер ...