Окисление парафиновых углеводородов
Учим химию / Учим химию / Окисление парафиновых углеводородов Окисление парафиновых углеводородов
Страница 5

Ион трех валентного металла в среде реакционной массы образует многоядерный катион:

Реакция с участием многоядерного катиона ускоряют реакцию и приводят к образованию продуктов окисления:

где: Ас- - анион кислоты (продукта окисления).

Таким образом, в начале процесса окисления с участием двухвалентных ионов металлов переменной валентности замедление реакции объясняется обязательной последовательностью процессов:

первичного инициирования, необходимая продолжительность которого увеличивается в результате большой потребности в первичных продуктов окисления (гидроперекисей), участвующих в образовании комплекса;

реакции образования комплекса;

процесса разрушения комплекса с образованием ионов и радикалов осколков комплекса, инициирующих развитую реакцию [31].

Было показано [4], что под действием кислорода эполеты металлов разлагаются, образуя две молекулы кислоты. Для практического использования катализатора большое значение имеет вопрос о стабильности жирных кислот в условиях технологического режима окисления. Тем не менее роль катализатора в процессе окисления высокомолекулярных жирных кислот выяснена недостаточно. Была изучена окисляемость фракций синтетических жирных кислот Сю -Ci3 и Си - С20. при переменном температурном режиме и в присутствии 0,2% КМпОд кислоты Сю - Сю окисляются незначительно, а кислоты Сю - Сго с большими скоростями. Кислотное число водорастворимых кислот по мере протекания каталитического окисления непрерывно повышается. Это свидетельствует о том, что кислоты обогащаются низкомолекулярными веществами. Наиболее эффективно процесс окисления ускоряется некоторой оптимальной концентрацией Мn, ровной -0,1%. Избыток КМnО4 по сравнению с оптимальной концентрацией или увеличение доли щелочного металла в составе катализатора приводят к разному уменьшению скорости процесса, в то время как один марганец влияет на скорость окисления гораздо слабее, чем в смеси с калием. Таким образом, основные ингибирующие функции в данном случае принадлежат, по-видимому, соединением щелочного металла [3].

Воздействие катализатора на реакцию окисления проявляется тем отчетливее, чем ниже температура окисления. При невысокой температуре катализированной окисления намного быстрее некатализированного. С повышением температуры различие в скоростях уменьшается. Это связано с тем, что предостаточно высокой температуре цепной процесс окисления способен к быстрому развитию в отсутствие катализатора, а солей катализатора выпадает в осадок на сравнительно неглубоких стадиях процесса вследствие накопления кислот и почти не участвует в реакции [4].

В промышленном производстве синтетических жирных кислот окисляют смесь (1:2) исходного парафина с возвратным, т.е. полученным после отделения продуктов реакции. Необходимая условия нормального протекания процесса присутствие катализатора. Обычно используют окиси марганца, содержащие щелочь или перманганат калия в количестве 0,08-0,1% от веса загрузки, считая на марганец. Реакция проходит при переменном температурном режиме 125-105°С. Постепенное снижение температуры по мере накопления продуктов окисления предотвращает обогащение жирных кислот побочными веществами, уменьшает концентрацию полифункциональных соединений окси кислот и т.п. Опытным путем было установлена, что окисление при более высокой постоянной температуре (125°С), хотя и значительно сокращает время реакции, но отрицательно сказывается на качестве синтетических жирных кислот. Процесс окисления прерывается при достижении кислотного число 70 [1].

Страницы: 1 2 3 4 5 6