Дисперсионный анализ.
Страница 6

113. Устойчивость и коагуляция дисперсных систем.- Как ука­зывалось в § 106, качественная особенность дисперсных систем состоит в их агрегативной неустойчивости.

Предотвращение агрегации первичных дисперсных частиц воз­можно в результате действия трех факторов устойчивости дис­персных систем: 1) кинетического, 2) электрического и 3) струк­турно-механического.

Необходимым условием слипания двух частиц дисперсной фазы является lit сближение, достаточное для проявления сил притяжения. Если частота столкно­вений коллоидных частиц мала, то дисперсная система может быгь устойчиноД (кинетический фактор устойчивост и). Это может иметь место ири очень малой концентрации дисперсных частиц (например, в некоторых аэрозолях) или при очень большой вязкости дисперсионной среды (например, в дис­персных системах типа t1—Т2).

Рис, 102. Схема псрекрывания ионных атмосфер двух ноллоидяых частиц.

Большинство устойчивых дисперс­ных систем кроме дисперсной фазы и дисперсионной среды содержат еще 3-й компонент, являющийся стабилизато­ром дисперсности. Стабилизатором мо­гут быть как ионы, так и молекулы, в связи с чем различают два механизма стабилизации дисперсных систем: электрический и молекулярно-адсорбционный (стр. 324).

Электрическая стабилизация дисперсных си­стем связана с возникновением двойного электрического слоя н'а границе раздела фаз. Такая стабилизация имеет основное значе­ние для получения устойчивых лиозолей и суспензий в полярной среде, например в воде. В любом гидрозоле все коллоидные -частицы имеют одинаковый знак заряда. Однако коллоидная мицелла в целом электронейтральна в результате образования двойного электрического слоя. Поэтому электростатическое оттал­кивание между коллоидными частицами (электрический фактор устойчивости) возникает только при достаточном их. сближении, когда происходит перекрывание их ионных атмо­сфер (рис. 102). Потенциальная энергия электростатического от­талкивания тем больше, чем больше перекрывание диффузных ча­стей двойного электрического слоя коллоидных частиц, т. е. чем меньше расстояние (х) между ними и чем больше толщина двой­ного электрического слоя.

Кроме электростатического отталкивания между коллоидными частицами, как и между молекулами любого вещества, действуют межмолекулярные силы притяжения, среди которых наибольшую роль играют дисперсионные силы. Действующие между отдель­ными молекулами дисперсионные силы быстро убывают с увели­чением расстояния между ними. По взаимодействие коллоидных 'частиц обусловлено суммированием дисперсионных сил притяже­ния между всеми молекулами, находящимися на поверхности контакта коллоидных частиц. Поэтому силы притяжения между коллоидными частицами убывают медленнее и проявляются на больших расстояниях, чем в случае отдельных молекул.

Потенциальная энергия взаимодействия (U) между коллоид­ными частицами представляет собой алгебраическую сумму по­тенциальной энергии электростатического отталкивания (Uэ) и потенциальной энергии дисперсионного притяжения (Uд.) между ними:

и=ид+иэ

Рис. 103. Потенциальная энергия взаимодействия между двумя одинаково заряженными частицами:

/ — электрическое отталкивание (^э)^ ^ — Дис­персионное притяжение (^л)1 S—результирую­щая энергия взаимодействия (£7)1 4 — то же, но при более крутом падении кривой /; х—рас­стояние между частицами; С/щакс— потенциаль­ный барьер взаимодействия дисперсных частиц.

Если Uэ > Пд (по абсолютной величине), то отталкивание прс-°бладает над притяжением и дисперсная система устойчива. Если Uэ<Uд, то происходит слипание сталкивающихся при броуновском движении коллоидных частиц в бо­лее крупные агрегаты и седимента« ция последних. Коллоидный рас­твор коагулирует, т. е. разде­ляется на коагулят (осадок) и дис­персионную среду.

В этом состоит сущность теории электрической стабилизации и коагуляции дисперсных систем, развитой впервые Б. В. Деряги-ным (1937 г.), а затем Л. Д. Ландау и голландскими учеными Фервеем и Овербеком (1948 г.); по первым буквам фамилий авто­ров ее называют теорией ДЛФО.

Страницы: 1 2 3 4 5 6 7 8 9 10 11

Смотрите также

Химическая физика и некоторые проблемы биологии
...

Полимерные композиты на основе активированной перекисью водорода целлюлозы и малеиногуанидинметакрилатом
Среди полимеров, нашедших широкое применение в различных областях жизнедеятельности человека, важное место занимает целлюлоза, как постоянно возобновляемый в природе полимер, и ее производн ...

Биохимия
Не вдаваясь в подробности происходящих в живых организмах процессах, отметим, что эти процессы возможны только при использовании внешних источников энергии и питательных веществ: для растений первич ...