1 : СЛ)6: С/з)": СЛ)6 = 1 : 0,016 : 0,0014 :0,00024
что близко к соотношениям концентраций электролитов, которые наблюдались при коагуляции разнообразных гидрозолей. Сказанное иллюстрируют данные табл. 22, где приведены эквивалентные концентрации электролитов (Ск), вызывающие коагуляцию гидрозоля оксида мышьяка (III).
Таблица 22. Пороги коагуляции (Ск отрицательно заряженного золя As„0, электролитами)
Электролит |
C„-1U8. h. |
(^L |
Электролит |
C„.l08, u. |
^к)* |
(Ск)ЫС1 |
(^LiCI | ||||
LiCI |
68,4 |
1,00 |
MgCb |
0,717 |
0,012 |
NaCI |
51,0 |
0,87 |
CaCIa |
0,649 |
0,011 |
КС1 |
49,5 |
0,85 |
SrCIa |
0,635 |
0,011 |
KNOa |
50,0 |
0,86 |
А1С1з |
0,093 |
0.0016 |
Молекулярно-адсорбционная стабилизация дисперсных систем играет большую роль в устойчивости дисперсий как в водной, так и в неводных средах. Дисперсные системы в неводных средах в принципе менее устойчивы, чем в водной среде. В неполярнои и не содержащей воды дисперсионной среде частицы дисперсной фазы лишены электрического заряда. Электрический фактор стабилизации отсутствует. Между дисперсными частицами действуют только силы взаимного притяжения. Ослабление этих сил, приводящее к стабилизации дисперсных систем, может происходить в результате образования вокруг коллоидных частиц адсорбционных слоев из молекул дисперсионной среды и растворенных в ней веществ. Такие слои ослабляют взаимное притяжение частиц дисперсной фазы и создают механическое препятствие их сближению.
Стабилизация дисперсных систем за счет сольватации дисперсной фазы молекулами дисперсионной среды возможна как в полярных, так и в неполярных средах. Так, гидратация частиц глины и кремниевой кислоты имеет существенное значение для устойчи-вости суспензий глин и золя кремниевой кислоты в водной среде.
Однако стабилизация дисперсных систем значительно более эффективна при добавлении к ним поверхностно-активных веществ (ПАВ) и высокомолекулярных соединений, адсорбирующихся на границе раздела фаз. Адсорбционные слои ПАВ и высокомолекулярных соединений, обладая упругостью и механической прочностью, предотвращают слипание дисперсных частиц. Образование таких молекулярно-адсорбционных твердообразных поверхностных слоев П. А. Ребиндер назвал структурно-механическим фактором стабилизации дисперсных систем. Этот механизм стабилизации играет основную роль при получении предельно устойчивых высококонцентрированных пен, эмульсий, коллоидных растворов и суспензий не только в неводных, но и в водных средах. Для структурно-механической стабилизации дисперсий в водной среде применяют мыла щелочных металлов, белки, крахмал, а в неводных средах — мыла щелочноземельных металлов, смолы, каучуки. Такие вещества называют защитными коллоидами.
Определение неоднородности целлюлозы по молекулярной массе
Целлюлоза, как и другие полимеры, представляет
собой смесь полимергомологов с различной длиной макромолекул, т.е. неоднородна
по молекулярной массе. Неоднородность целлюлозы по молекулярной ...
Новые научные направления современной химии и их прикладное использование
Химия
- наука социальная. Её высшая цель – удовлетворять нужды каждого человека и
всего общества. Многие надежды человечества обращены к химии. Молекулярная
биология, генная инженерия и би ...