Рис. 8. Температурные зависимости логарифмического декремента затухания Д (а) и логарифма действительной части комплексного модуля сдвига G (б) образцов СКТВ-1 (резкое охлаждение) (1), СКТВ-1, наполненных 15 вес. ч. аэросила 300 (резкое охлаждение) (2) и СКТВ-1, наполненных 15 вес. ч. аэросила 300 и выдержанного при 190 К (3)
Рис. 9. Температурные зависимости tg б, полученные после резкого охлаждения образцов СКТВФ, наполненных 35 вес. ч. аэросила 300 и адсорбировавших 6,0% воды (7), 3,3% этилового спирта (2) и 2,8% эти-ленгликоля (3)
Видно, что каучук, содержащий наполнитель, характеризуется дополнительным максимумом, лежащим в области между стеклованием и плавлением и соответствующим по своему положению наблюдаемому при исследовании диэлектрических свойств. Этот максимум не связан с кристаллизацией, поскольку положение и форма его не изменяются после предварительной выдержки образца при 190 К в течение 1 ч. Аналогичные переходы в области 170—200 К обнаружены нами и для других исследованных сшитых кремнийорганических каучуков, наполненных аэросилом. Следует отметить, что размытый переход в этой температурной области наблюдается в работе [14]. Из сопоставления данных, полученных при исследовании методами диэлектрических и механических потерь, можно заключить, что указанный переход определяется размораживанием подвижности макромолекул в каучуковой матрице. Можно предположить, что в рассматриваемой области температур размораживается подвижность макромолекул каучука, связанного с частицами аэросила. Поскольку доля таких молекул, образующих переходный слой и обладающих из-за связанности с частицами аэросила ограниченной подвижностью, невелика по сравнению со «свободными» макромолекулами, следует ожидать, что интенсивность максимума механических потерь, определяемая размораживанием подвижности этих макромолекул, должна быть существенно ниже по сравнению с максимумом потерь, определяемым стеклованием не связанной с наполнителем аморфной фазы. Когда в переходном слое присутствуют молекулы воды, они играют роль дипольной метки, что при измерении диэлектрических свойств выражается в появлении интенсивного максимума tg б, отражающего размораживание подвижности каучуковой матрицы.
Для окончательного подтверждения высказанного предположения ми ввели в качестве дипольной метки этиленгликоль и этиловый спирт. На рис. 9 приведены зависимости тангенса угла диэлектрических потерь для наполненного аэросилом (35 вес. ч. аэросила 300) каучука СКТВФ, сорбировавшего воду, этиловый спирт и этиленгликоль. В то время как максимумы, отвечающие размораживанию подвижности диполей собственно этилового спирта и этиленгликоля смещены относительно максимумов, обусловленных размораживанием подвижности молекул воды (на чем не будем останавливаться), температурная область релаксации, которую мы относим к размораживанию подвижности молекул каучука в переходных слоях, не зависит от типа дипольной метки, и во всех случаях в этой области наблюдается отчетливый максимум tg б диэлектрических потерь.
Таким образом, можно считать, что релаксационный максимум в области 190—220 К определяется размораживанием подвижности или своего рода расстекловыванием переходного слоя.
Разложение клетчатки микроорганизмами
Еще в
древности при построении деревянных судов для защиты дерева использовали
асфальт. Во времена Римской империи суда обивали металлическими листами. Выбор
материалов производился экспери ...
Комплексные соединения в аналитической химии
Обширную группу
химических соединений составляют комплексы, в молекулах которых всегда можно
выделить центральный атом или ион, вокруг которого сгруппированы другие ионы
или молекулярные гр ...
Получение хлористого винила
Тема реферата «Получение хлористого винила» по дисциплине
«Органический синтез».
Хлористый винил СН2=СНС1—бесцветный газ с эфирным
запахом, температура кипения — 12,5°С, температура плавл ...