Каталитические реакции протекают по циклическому маршруту, т. е. по маршруту, состоящему из нескольких последовательных или последовательно-параллельных стадий, в результате которых один из компонентов — катализатор, расходуемый в первой стадии, вновь регенерируется в последней стадии. Остальные компоненты исходной реакционной смеси — субстраты каталитической реакции — в результате этого циклического маршрута превращаются в продукты реакции. Например, окисление тиосульфат иона перекисью водорода, которое катализируется нонами I, протекает по схеме:
(вторая и третья стадии, по-видимому, не являются элементарными).
Эта схема представляет собой циклический маршрут с итоговым уравнением
в двух первых стадиях которого катализатор расходуется, а в последней снова регенерируется.
В качестве второго примера можно привести реакцию хлорангидридов карбоновых
кислот с ароматическими аминами.
Она может быть существенно ускорена добавлением диметиламинопиридина. Это ускорение связано с возникновением циклического маршрута, приводящего к превращению субстратов в продукт реакции — амид — и к регенерации диметиламинопиридина
Общим в приведенных примерах является то, что в первой части маршрута один из субстратов реагирует с катализатором Е с образованием продукта превращения катализатора Е, а во второй части маршрута продукт превращения катализатора взаимодействует со вторым субстратом, превращая его в продукт реакции, с одновременной регенерацией катализатора.
Такой механизм катализа часто встречается в окислительно-восстановительных реакциях, и роль катализатора в этом случае сводится к созданию нового, более эффективного пути переноса электрона от восстановителя к окислителю.
Наиболее отчетливо это видно на примере катализа реакций переноса электронов между ионами. Например, реакция идет очень медленно, так как требует одновременного участия трех ионов. Добавление ионов Мn2+ резко ускоряет процесс в результате возникновения маршрута, состоящего только из бимолекулярных Реакция с диметиламинпиридином представляет собой нуклеофильное замещение при карбонильном атоме С. В данном случае более сильный, чем ароматический амин, нуклеофил — диметиламинопиридин — обеспечивает быстрое превращение хлорангидрида в ацилдиметиламнно-лиридиний-катион, который благодаря наличию положительного заряда обладает высокой электрофильностью и легко атакуется амином. Такой тип катализа известен как нуклеофильный катализ.
Второй, наиболее распространенный механизм действия катализаторов включает в качестве первой стадии обратимое взаимодействие одного или нескольких субстратов с катализатором с образованием комплекса катализатор — субстрат. Так протекает катализ химических превращений ионами металлов и их координационными соединениями и катализ ферментами. К этому же типу можно отнести катализ кислотами, поскольку он включает, как правило, присоединение протона к одному из субстратов, что можно рассматривать как образование комплекса протон—субстрат.
Комплексообразование может приводить к нескольким различным эффектам, обеспечивающим ускорение реакции.
1. В комплексе с катализатором может происходить существенное перераспределение электронной плотности в молекуле субстрата, приводящее к изменению его реакционной способности. Например, присоединение к субстрату протона или образование субстратом координационной связи с ионом металла повышает электрофильность субстрата, делая возможным взаимодействие его с относительно слабыми нуклеофильными реагентами. Так, ионы Сu2+ являются эффективными катализаторами гидролиза эфиров аминокислот. Это прежде всего связано с тем, что последние образуют хелатный комплекс с ионом Сu2+, в котором положительный заряд иона Сu2+ поляризует связь С=О и облегчает нуклеофильную атаку молекулы воды на электрофильный атом углерода: