Электронная микроскопия
Страница 1

ЭЛЕКТРО́ННАЯ МИКРОСКОПИ́Я, совокупность методов исследования с помощью электронных микроскопов микроструктур тел, их локального состава и локализованных на поверхностях или в микрообъемах тел электрических и магнитных полей. На первом этапе электронная микроскопия применялась в основном для наблюдения биологических объектов, причем для интерпретации снимков использовался лишь адсорбционный контраст. Однако появление метода реплик — отпечатков, сделанных с поверхности, и особенно декорирование их металлами (1940-е –1950-е гг.) позволило успешно изучать неорганические материалы — сколы и изломы кристаллов. Примерно с начала 1950-х годов начинаются интенсивные попытки исследования тонких фольг материалов на просвет. Это стало возможным в результате существенного повышения, до 100кВ, ускоряющего напряжения в электронных микроскопах. С этого периода начинается бурное развитие электронно-микроскопической техники, электронная микроскопия находит все более широкое применение в физическом материаловедении. Одной из важнейших причин этого, по-видимому, является возможность наблюдать в одном эксперименте, как изображение объекта в реальном пространстве, так и его дифракционную картину. Поэтому ЭМ является наиболее подходящим методом исследования структур сложных кристаллических объектов. Электронную микроскопию можно разделить на 3 группы: Просвечивающая электронная микроскопия (ПЭМ, Transmission electron microscopy, TEM) Просвечивающая электронная микроскопия высокого разрешения (ВРЭМ, High-resolution electron microscopy, HREM) Растровая электронная микроскопия (РЭМ, Scanning electron microscopy, SEM). Первый просвечивающий электронный микроскоп создан Э. Руска (см. РУСКА Эрнст). Растровую микроскопию разработали Г. Бинниг (см. БИННИГ Герд) и Г. Рорер (см. РОРЕР Генрих).

Совокупность методов исследования с помощью электронных микроскопов (МЭ) микроструктур тел (вплоть до атомно-молекулярного уровня), их локального состава и локализованных на поверхностях или в микрообъёмах тел электрич. и магн. полей («микрополей»). Э. м. включает также усовершенствование и разработку новых МЭ и др. корпускулярных микроскопов (напр., протонного микроскопа) и приставок к ним; разработку методик подготовки образцов, исследуемых в МЭ; изучение механизмов формирования электронно-оптич. изображений; разработку способов анализа получаемой информации.

Объекты исследования в Э. м.— обычно тв. тела. В просвечивающих МЭ (ПЭМ) эл-ны с энергиями от 1 кэВ до 5 МэВ проходят сквозь объект, поэтому изучаются образцы в виде тонких плёнок, фольги (рис. 1), срезов и т. п. толщиной от 1 нм до 10 мкм (от 10 A до 105 A). Микрокристаллы, порошки, аэрозоли и т. п. можно изучать, нанеся их предварительно на подложку: тонкую плёнку для исследования в ПЭМ или массивную подложку для исследования в растровых МЭ (РЭМ). Поверхностную и приповерхностную структуру массивных тел толщиной существенно больше 1 мкм исследуют с помощью РЭМ (рис. 2), отражательных, зеркальных МЭ, ионных проекторов и электронных проекторов. Поверхностная геом. структура массивных тел изучается также и методом реплик: с поверхности такого тела снимается отпечаток в виде тонкой плёнки углерода, коллодия, формвара и т. п., повторяющий рельеф поверхности и рассматриваемый в ПЭМ. Обычно предварительно на реплику в вакууме напыляется под скользящим (малым к поверхности) углом слой сильно рассеивающего эл-ны тяжёлого металла (напр., Pt), оттеняющий выступы и впадины геом. рельефа — т. н. метод декорирования. Этот метод позволяет исследовать не только геом. структуры поверхностей, но и микрополя, обусловленные дислокациями (рис. 3), скоплениями точечных дефектов (см. ДЕФЕКТЫ В КРИСТАЛЛАХ), ступенями роста крист. граней, доменной структурой (см. ДОМЕНЫ) и т. д. В этом случае на поверхность образца вначале напыляется очень тонкий слой декорирующих ч-ц (атомы Au, Pt, молекулы полупроводников или диэлектриков), осаждающихся преим. на участках сосредоточения микрополей, а затем снимается реплика с включениями декорирующих ч-ц.

Страницы: 1 2

Смотрите также

Синтез и свойства комплексов железа (II) и железа (III)
Цель данной работы состоит в изучении строения и свойств комплексных соединений железа (II) и железа (III). В ходе выполнения работы были поставлены следующие задачи: 1) изучение литер ...

Контрольные вопросы.
В чем состоит главная задача химии? Основанием химии является основная двуединая проблема химии. В чем она заключается? От каких факторов зависят свойства вещества? Запишите четыре концеп ...

Полимерные композиты на основе диальдегилцеллюлозы и полигуанилинметакрилата
Среди полимеров, нашедших широкое применение в различных областях жизнедеятельности человека, важное место занимает целлюлоза, как постоянно возобновляемый в природе полимер, и ее производн ...