Химические свойства

Висмут в сухом воздухе устойчив, во влажном наблюдается его поверхностное окисление. При нагревании выше 1000° С сгорает голубоватым пламенем с образованием оксида Bi2O3. В ряду напряжений Висмут стоит между водородом и медью, поэтому в разбавленной серной и соляной кислотах не растворяется; растворение в концентрированных серной и азотной кислотах идет с выделением SO2 и соответствующих оксидов азота.

Висмут проявляет валентность 2, 3 и 5. Соединения Висмута низших валентностей имеют основной характер, высших - кислотный. Из кислородных соединений Висмута наибольшее значение имеет оксид Bi2O3, при нагревании меняющий свой желтый цвет на красно-коричневый. Bi2O3 применяют для получения висмутовых солей. В разбавленных растворах висмутовые соли гидролизуются. Хлорид BiCl3 гидролизуется с выпадением хлороксида BiOCl, нитрат Bi(NO3)3 - с выпадением основной соли BiONО3·BiOOH. Способность солей Висмут гидролизоваться используется для его очистки.

Соединения 5-валентного Висмута получаются с трудом; они являются сильными окислителями. Соль КВiO3 (соответствующая ангидриду Bi2O5) образуется в виде буро-красного осадка на платиновом аноде при электролизе кипящего раствора смеси КОН, КСl и взвеси Bi2O3. Висмут легко соединяется с галогенами и серой. При действии кислот на сплав висмута с магнием образуется висмутин (висмутистый водород) BiH3; в отличие от арсина AsH3, висмутин - соединение неустойчивое и в чистом виде (без избытка водорода) не получено. С некоторыми металлами (свинцом, кадмием, оловом) Висмут образует легкоплавкие эвтектики; с натрием, калием, магнием и кальцием - интерметаллические соединения с температурой плавления, значительно превышающей температуры плавления исходных компонентов. С расплавами алюминия, хрома и железа висмут не взаимодействует.

Металлические свойства у него выражены посильней, но к этому его просто обязывает положение в таблице элементов: он ближе к "полюсу металличности" (левый нижний угол таблицы), чем другие элементы его подгруппы. В сухом воздухе висмут устойчив, но во влажном он облачается в тончайшее покрывало оксида. Если же металл нагреть выше 1000 °С, он сгорает красивым голубоватым пламенем.

Как известно, при электролизе ионы металла переносятся с анода на катод. Так считали почти полтора столетия - с тех пор как английский ученый Майкл Фарадей установил важнейшие законы электролиза. Но вот в 1975 году сотрудники Института общей и неорганической химии Академии наук УССР обнаружили, что некоторые металлы при электролитических процессах устремляются к аноду. В опытах украинских ученых катод был изготовлен из висмута, анод - из никеля, а роль электролита выполнял расплавленный едкий натр. Когда был включен ток, висмутовый катод начал таять на глазах, и уже вскоре на поверхности анода появились блестящие шарики из чистого висмута.

Это открытие не опровергает, а лишь уточняет закон Фарадея. Большинство металлов действительно выделяется на катоде, и лишь некоторые - висмут, свинец, олово, сурьма - "предпочитают" анод, правда, при условии, что электролитом служит расплав солей щелочных и щелочноземельных металлов.

"Поправка к закону" может быть использована для очистки многих металлов и сплавов от примесей висмута, свинца и других "нарушителей порядка". Для этого металлическую заготовку, которую нужно подвергнуть рафинированию, вводят в электролит в качестве катода. Начинается электролиз, и ненужные примеси, расставшись с основной массой металла, перебазируются на анод. Этот экономичный способ назван катодной очисткой.

Как известно, все металлы, да и вообще большинство твердых тел, имеют кристаллическую структуру, при которой их атомы (ионы, молекулы) располагаются в пространстве в строго определенном порядке.

В ходе многочисленных опытов удалось установить, что если на переохлажденную металлическую пластинку, находящуюся в камере, где обеспечены указанные условия, нанести пары какого-либо металла, то на пластинке тут же образуется "стеклянная" пленка. Подобный эксперимент, в частности, был проделан с висмутом. Оказалось, что пленка из висмутового "стекла" толщиной всего в несколько микрон обладает буквально сказочными магнитными и сверхпроводящими свойствами. Даже при обычной температуре ее сопротивление электрическому току во много раз ниже, чем у того же висмута в кристаллическом состоянии.

Висмут помог советским физикам синтезировать ядра 107-го элемента периодической системы. Помещенная в ускоритель висмутовая мишень подверглась ожесточенной бомбардировке ионами хрома. Более двух месяцев непрерывно работал ускоритель, сопоставлялись и анализировались результаты десятков тончайших экспериментов, и вот, наконец, можно было с уверенностью заявить, что при слиянии иона хрома с ядром висмута образуются ядра 107-го элемента, период полураспада которых всего около двухтысячных долей секунды.

Смотрите также

Результаты экспериментов
Таблица 3.4. Экспериментальные данные по окислительному карбонилированию фенилацетилена и метилацетилена. Иссл. система Дата Реагирующая система ...

Усовершенствование технологии установки висбрекинга
Нефть и газ– это основные источники энергии в современном мире. На топливах, полученных из них, работают двигатели сухопутного, воздушного и водного транспорта, тепловые электростанции. В н ...

Дмитрий Иванович Менделеев – ученый с мировыми заслугами
Передо мной стоит одна цель узнать и утвердить является ли Дмитрий Иванович Менделеев ученым с мировыми заслугами. Для этого я использую различные материалы в виде видеозаписей о жизни этог ...