Большинство окружающих нас веществ - органические соединения. Это ткани животных и растений, наша пища, лекарства, одежда (хлопчатобумажные, шерстяные и синтетические волокна), топливо (нефть и природный газ), резина и пластмассы, моющие средства. В настоящее время известно более 10 миллионов таких веществ, и число их каждый год значительно возрастает благодаря тому, что учёные выделяют неизвестные вещества из природных объектов и создают новые, не существующие в природе соединения.
Такое многообразие органических соединений связано с уникальной особенностью атомов углерода образовывать прочные ковалентные связи, как между собой, так и с другими атомами. Атомы углерода, соединяясь друг с другом как простыми, так и кратными связями, могут образовывать цепочки практически любой длины и циклы. Большое разнообразие органических соединений связано также с существованием явления изомерии.
Почти все органические соединения содержат также водород, часто в их состав входят атомы кислорода, азота, реже - серы, фосфора, галогенов. Соединения, содержащие атомы любых элементов (за исключением О, N, S и галогенов), непосредственно связанные с углеродом, объединены под названием элементоорганические соединения; основную группу таких соединений составляют металлоорганические соединения (рис. 3).
Рис. 3
Огромное число органических соединений требует их четкой классификации. Основу органического соединения составляет скелет молекулы. Скелет может иметь открытую (незамкнутую) структуру, тогда соединение называют ациклическим (алифатическим; алифатические соединения называют также соединениями жирного ряда, т.к. они впервые были выделены из жиров), и замкнутую структуру, тогда его называют циклическим. Скелет может быть углеродным (состоять только из атомов углерода) либо содержать другие, отличные от углерода атомы - т. наз. гетероатомы, чаще всего кислород, азот и серу. Циклические соединения подразделяют на карбоцикличе-ские (углеродные), которые могут быть ароматическими и алициклическими (содержащими один или несколько циклов), и гетероциклические.
Атомы водорода и галогенов в скелет не входят, а гетероатомы входят в скелет лишь в том случае, если они имеют, по меньшей мере, две связи с углеродом. Так, в этиловом спирте СН3СН2ОН атом кислорода не включён в скелет молекулы, а в диметиловом эфире СН3ОСН3 включён в него.
Кроме того, ациклический скелет может быть неразветвлённым (все атомы расположены в один ряд) и разветвлённым. Иногда неразветвлённый скелет называют линейным, однако следует помнить, что структурные формулы, которыми мы чаще всего пользуемся, передают лишь порядок связи, а не реальное расположение атомов. Так, «линейная» углеродная цепь имеет зигзагообразную форму и может закручиваться в пространстве различными способами.
В скелете молекулы различают четыре типа атомов углерода. Принято атом углерода называть первичным, если он образует только одну связь с другим атомом углерода. Вторичный атом связан с двумя другими атомами углерода, третичный - с тремя, а четвертичный все свои четыре связи затрачивает на образование связей с атомами углерода.
Следующим классификационным признаком является наличие кратных связей. Органические соединения, содержащие только простые связи, называются насыщенными (предельными). Соединения, содержащие двойные или тройные связи, называются ненасыщенными (непредельными). В их молекулах на один атом углерода приходится меньшее число атомов водорода, чем в предельных. Циклические ненасыщенные углеводороды ряда бензола выделяют в отдельный класс ароматических соединений.
Обезжелезивание воды
Данное исследование
проводилось в рамках школьного химико-биологического проекта «Многоликое железо».
Проект реализуется в течение учебного
года силами учащихся десятых и одиннадцатых кла ...
Химические свойства ароматических углеводородов. Полиядерные ароматические соединения
Реакции электрофильного замещения:
галогенирование, нитрование, сульфирование, алкилирование, ацилирование.
Механизм реакции электрофильного замещения. Понятие о p- и s-комплексах, их строен ...
Получение хлора и щелочи путем электролиза водных растворов хлоридов щелочных металлов. Извлечение ртути
Электролизеры для производства хлора и щелочи, в
которых используется ртутная амальгама, находят широкое применение благодаря
возможности получения концентрированных растворов щелочи. Однако ...