Редкоземельные металлы и их полуторные оксиды
Дипломы, курсовые и прочее / Дипломы, курсовые и прочее / Редкоземельные металлы и их полуторные оксиды Редкоземельные металлы и их полуторные оксиды
Страница 2

редкоземельный элемент металл европий оксид

Влияние условий получения полуторных оксидов редкоземельных элементов на их кристаллическое строение. Окисление металлов

В монографии Серебрянникова [9] имеется указание о том, что лёгкие редкоземельные металлы при нагревании в атмосфере кислорода воспламеняются: в результате горения образуются оксиды. Без нагревания металлическая поверхность в атмосфере сухого воздуха сохраняется довольно долго, во влажном воздухе она быстро покрывается слоем оксида.

Несколько более подробные данные находятся в работах Кремерса [10] и Лава [11]. Скорость атмосферной коррозии определялась Лавом на металлических образцах, вырезанных в виде пластин при температурах 35 и 950. Опыты проводили при разной относительной влажностях. Испытания при температурах 200, 400 и 600° проводили в трубчатой печи, через которую продували слабый ток воздуха.

При атмосферном окислении редкоземельных металлов образуются гидратированные оксиды с большим объемным приростом. Это приводит к разрушению защитной оксидной пленки и обнажению металлической поверхности. Корродирующее воздействие воздуха на редкоземельные металлы сильно зависит от природы последних. Европий окисляется почти так же энергично, как и натрий. Лантан и неодим окисляются довольно быстро (в сухом воздухе при комнатной температуре со скоростью от 1 до 100 мг/дм2 в сутки). Скорость окисления сильно возрастает с умеренным нагревом, причем наличие паров воды (75%-я относительная влажность) увеличивает скорость окисления при любой температуре приблизительно на один порядок. Прочие редкоземельные металлы и нитрий гораздо устойчивее. Скорость их окисления в сухом воздухе при комнатной температуре очень мала, но она существенно возрастает с нагревом (при температурах выше 200°) или во влажных условиях при температурах около 1000. Самарий отличается большой стойкостью в сухом воздухе, причем с повышением температуры от 200 до 6000 суточная коррозия возрастает от 35 мг/дм2.

В работе Ли Линда и Грина [12] для исследования использовались металлы повышенной чистоты (99.9%). Скорость окисления образцов определялась в сухом и в насыщенном влагой воздухе. Полученные результаты хорошо согласуются с данными работы Лава[11] (несколько меньшие скорости коррозии в работе [12] объясняются большей чистотой используемых в этой работе материалов).

Механизм окисления металлов при высоких температурах по мнению Ворреса и Иринга [13], определяется диффузией кислорода через слой оксида. Такой механизм представляется вполне вероятным, поскольку во всех случаях образующиеся оксиды имели структуру флюорита, а миграция анионов в решетке типа флюорита, видимо, происходит настолько интенсивно, что почти подавляет движение катионов.

На основании рассмотренных данных о скорости окисления металлов можно прийти также к выводу, что скорость корродирования в сильной мере зависит от чистоты металлов.

Влияние влаги, сильно увеличивающее скорость корродирования, по мнению Лава [11], сводится прежде всего к изменению природы первоначально образовавшейся оксидной пленки. Однако как в работе Лава, так и в других работах [12,13] не приводятся данные о структуре оксидной пленки и составе образующихся фаз.

Изучение окисления металлов проводилось с использованием методики непрерывного взвешивания образцов.

Была сконструирована прецизионная установка для систематических исследований равновесия и кинетики в широком интервале давлений температуры. В ходе опыта можно было непрерывно следить за давлением газов, температурой и изменением веса образца.

Изменения веса регистрировались с помощью кварцевых пружинных весов с точностью до 1.5 · 10-5 г, то есть около 0,01%. Измельчение металлов происходило непосредственно перед опытом. Величина отдельных зерен колебалась от 0.1 до 0.5 мм.

Навеску порошкообразного металла в количестве 0.1-0.2 подвешивали в платиновой чашечке весом 0.04 г в печи. Установку подключали к наносу о создавали разрежение. Образец обезгаживали при слабом нагреве и непрерывной откачке выделяющихся газов. После этого его нагревали до требуемой температуры и в систему вводили воздух или кислород. Запись изменения веса проводили через каждые 5 минут.

Страницы: 1 2 3 4 5 6 7

Смотрите также

Технология получения и свойства мочевино-формальдегидных смол
Первые продукты конденсации мочевины с формальдегидом (карбамидные смолы) были получены еще в 1896 г., но производство мочевино-альдегидных смол налажено лишь в 1920—1921 гг. Мочевино-фо ...

Нефть: происхождение, состав, методы и способы переработки
...

Химико-токсикологический анализ производных фенотиазина
                В России и за рубежом, начиная с 1945 г., после обнаружения фармакологической активности N-замещенных производных фенотиазина, было синтезировано большое число препаратов, об ...