t+ = Q+/(Q+ + Q-) = I+/(I+ + I-); (1.9)
t- = Q-/(Q+ + Q-) = I-/(I+ + I-). (1.10)
Очевидно, что t+ + t- = 1. Отсюда:
t+ = 1 – t- и t- = 1 – t+. (1.11)
Числа переноса можно выражать через скорости движения и подвижности ионов:
t+ = v+0/(v+0 + v-0) = λ+/(λ+ + λ-) = λ+/λ∞;
t- = v-0/(v+0 + v-0) = λ-/(λ+ + λ-) = λ-/λ∞. (1.12)
Так как в ходе переноса заряда ионы разряжаются на электродах, то концентрации электролита в анодном, катодном и среднем пространствах различны:
t+ = Δск/Δс иt- = Δса/Δс (1.13)
где Dск и Dса– изменение концентрации электролита в катодном и анодном пространствах; Dс – общая убыль концентрации элек-тролита (изменение концентрации в среднем пространстве).
Количественно степень распада электролита на ионы выра-жается через a (степень диссоциации):
a = np/n, (1.14)
где np – количество молекул, распавшихся на ионы; n – общее количество молекул электролита, введенных в раствор. По значению a различают сильные и слабые электролиты (a > 0,85 и 0,25 > a > 0,85 соответственно).
При диссоциации слабого электролита, распадающегося на одновалентные ионы по схеме: АВ ↔ А+ + В-, константа диссоциации:
Кд = [А+].[В-]/[АВ], (1.15)
где символы в квадратных скобках указывают на концентрации соответствующих веществ. Если степень диссоциации
a = [А+]/с = [В-]/с = λ/λ∞, (1.16)
то Кд = a2.с, или a = . (1.17)
Соотношение (1.17) называется законом разведения Оствальда (в простейшей форме). После подстановки (1.16) в (1.17) закон разведения Оствальда примет вид
Кд = λ2. с/[(λ∞.(λ∞ - λ)]. (1.18)
Зависимость константы диссоциации от температуры описывается уравнением
lg (К/К) = -ΔНдисс(1/Т2 – 1/Т1)/(2,3.R), (1.19)
где DНдисс– теплота диссоциации, Дж.моль-1.
Работу диссоциации можно определить по уравнению изотермы Вант-Гоффа:
w = -DG0 = RTlnKи w = -DG0 = 2,3RTlgK, (1.20)
где DG0 – стандартное изменение энергии Гиббса (изобарно-изотермического потенциала) при диссоциации, кДж.моль-1.
Необходимо учесть, что для сильных электролитов в приведенные выше уравнения вместо концентрации необходимо подставлять активности, которые связаны с концентрациями через коэффициент активности:
а = g.c, (1.21)
где а – активность сильного электролита, моль.м-3; g - коэффициент активности сильного электролита при данной концентрации, с – молярная концентрация сильного электролита, моль.м-3;
Активностью сильного электролита называется активная часть этого вещества в растворе. Коэффициенты активностей для большинства веществ известны и приведены в справочнике (например, в [8]). Активность электролитов чаще всего выражают через моляльность m и средние ионные коэффициенты активности γ±.
Таблица 1 - Соотношения между моляльностью m, средней ионной моляльностью m±, активностью а и средним ионным коэффициентом активности γ± для некоторых электролитов
Тип валентности электролита |
Пример |
а = =(m±∙γ±)ν |
а± = = ν |
1-1, 2-2, 3-3 |
KCl (1-1); ZnSO4 (2-2); AlPO4 (3-3) |
m2g±2 |
mg± |
2-1, 1-2 |
CaCl2 (2-1); Na2SO4 (1-2) |
4m3g±3 |
3 mg± |
3-1, 1-3 |
AlCl3 (3-1), Na3PO4 (1-3) |
27m4g±4 |
4 mg± |
3-2, 2-3 |
Al(SO4)3 (3-2); Fe3(PO4)2 (2-3) |
108m5g±5 |
5mg± |
Каталитический риформинг
Бензины являются
одним из основных видов горючего для двигателей современной техники.
Автомобильные и мотоциклетные, лодочные и авиационные поршневые двигатели потребляют
бензины. В настоящ ...
Исследование возможностей синтеза фенилселиконатов натрия, содержащих в своем составе атом кобальта
Министерство образования и науки Российской
Федерации
Федеральное государственное автономное образовательное
учреждение
Дальневосточный Федеральный Университет
Институт химии и прик ...
Монокристаллический кремень
Основной объем
монокристаллического кремния (80-90%) потребляемого электронной
промышленностью, выращивается по методу Чохральского.
Фактически весь кремний,
используемый для производст ...