Термодинамика электрохимических систем и электродных процессов. Условная водородная шкала. Правило знаков ЭДС и электродных потенциалов. Электрохимический потенциал. Электрохимические равновесия
Дипломы, курсовые и прочее / Равновесные и поляризационные диаграммы потенциал-pH / Дипломы, курсовые и прочее / Равновесные и поляризационные диаграммы потенциал-pH / Термодинамика электрохимических систем и электродных процессов. Условная водородная шкала. Правило знаков ЭДС и электродных потенциалов. Электрохимический потенциал. Электрохимические равновесия Термодинамика электрохимических систем и электродных процессов. Условная водородная шкала. Правило знаков ЭДС и электродных потенциалов. Электрохимический потенциал. Электрохимические равновесия
Страница 2

Рассмотрим два примера установления электрохимического равновесия на границе раздела фаз.

1. Граница двух различных металлов.

При установлении равновесия на этой границе происходит выравнивание электрохимических потенциалов электронов в металлах М1 и М2.

Условие равновесия имеет вид

(1.1.13)

(1.1.14)

Отсюда для гальвани-потенциала на границе металл – металл получают выражение:

(1.1.15)

Таким образом, в условиях равновесия работа перенесения электрона из одного металла в другой равна нулю, но работа переноса единицы воображаемого заряда, т. е. , отлична от нуля, поскольку химические потенциалы электрона в различных металлах неодинаковы.

2. Граница металла М с раствором, содержащим ионы этого же металла. При установлении равновесия происходит выравнивание электрохимических потенциалов ионов Mz+ в растворе и в кристаллической решетке металла.

При равновесии:

(1.1.16)

(1.1.17)

Гальвани-потенциал на границе металл – раствор соответствующей соли имеет вид:

(1.1.18)

Поскольку , а , уравнение (1.1.18) можно переписать в виде:

(1.1.19)

Уравнение (1.1.19) – это частный случай уравнения Нернста для отдельного гальвани-потенциала. Таким образом, в условиях рассмотренного электрохимического равновесия работа перенесения иона Mz+ из металла в раствор или обратно равна нулю. Гальвани-петенциал зависит от концентрации потенциалопределяющих ионов Mz+ и также может быть сведен к нулю. Однако невозможность измерить гальвани-потенциал не позволяет установить, при какой именно концентрации Mz+ =0.

Правильно разомкнутая электрохимическая цепь, на концах которой можно измерить электрическую разность потенциалов, всегда должна заканчиваться одинаковыми по своему химическому составу металлами. Электрохимическая цепь является равновесной при условии, что электрохимическое равновесие наблюдается на каждой фазовой границе, а разность потенциалов на концах цепи Е скомпенсирована разностью потенциалов от внешнего источника цепи.

Из (1.1.5):

E=–ΔG/nF (1.1.20)

Т.е. разность потенциалов на концах равновесной электрохимической цепи однозначно связана с изменением свободной энергии Гиббса в ходе соответствующей химической реакции. Величина E и называется ЭДС, т.е. электродвижущей силой электрохимической цепи. Уравнение (1.1.20) применимо только в том случае, если на всех фазовых границах устанавливается равновесие, в противном случае разность потенциалов на концах цепи не равна ЭДС и уравнение оказывается неприменимым [2].

Страницы: 1 2