Обескремнивание воды известью основано на небольшой растворимости силиката кальция. При наличии в исходной воде 10 . 12 мг/л кремниевой кислоты остаточное содержание ее в обработанной воде составляет 6 . 8 мг/л. С избытком извести и повышением температуры глубина обескремнивания возрастает. Так, если подлежащую обескремниванию воду нагреть в каскадном подогревателе до температуры 80 .90°С и насытить известью в сатураторе (рис. 22.1), то при этом выпадают в осадок гидроксид магния, сорбирующий SiO32-, силикат и карбонат кальция. Вода обескремнивается и частично умягчается.
Осветляют воду фильтрованием, избыток гидроксида кальция удаляют декарбонизацией в скрубберах продувкой очищенными дымовыми газами. Образующийся при этом осадок
В очищенной воде содержится 0,35 . 0,50 мг/л Si032-, солей жесткости — не более 0,01 мг-экв/л, щелочность не превышает 0,3 мг-экв/л. Углекислота удаляется из воды и происходит частичное разложение гидрокарбонатов.
Обескремнивание воды солями железа основано на способности хлопьев гидроксида железа (II), образующегося при введении в воду его солей, сорбировать молекулярно-дисперсную и коллоидную кремниевую кислоту.
Установка, используемая для обескремнивания воды сульфатом железа (II) или хлоридом железа (III), состоит из вертикального смесителя, дозаторов реагента и известкового молока, осветлителя, фильтра и насоса для рециркуляции осадка. Благодаря рециркуляции осадка значительно снижается расход коагулянта.
На снижение содержания кремниевой кислоты с 12 . 14 до 2 мг/л расходуется 300 . 350 мг сульфата железа(II). Оптимальные значения рН (8,5 . 9,5) поддерживаются добавлением в воду извести.
Обескремнивание воды солями алюминия основано на их способности сорбировать кремниевую кислоту из раствора. В качестве реагентов применяют алюминат натрия и сульфат алюминия.
Концентрация остаточной кремниевой кислоты при использовании алюмината натрия составляет 0,5 . 2 мг/л; расход алюмината — 150 . 200 мг/л. Применение вместо алюмината натрия более дешевого сульфата алюминия уменьшает глубину декарбонизации и увеличивает содержание сульфатов, что нежелательно для вод, идущих на питание паровых котлов.
Высокой сорбционной способностью по Si032- обладают хлопья алюмината магния, образующиеся при одновременном введении в воду солей магния и алюмината натрия при рН свыше 8,5. Для получения оптимального значения рН воду подщелачивают.
Расчетную дозу извести, мг/л (в пересчете на СаО), для подщелачивания воды рН=7,8 . 8,3 при введении в нее солей алюминия или железа определяют по формуле
(22.1)
где Дк — доза коагулянта в пересчете на безводный продукт, Мг/л; [СО2] — содержание в исходной воде оксида углеродa(IV), мг/л; ек — эквивалентная масса активного вещества коагулянта, мг/мг-экв.
Схема сооружений для обескремнивания воды этим методом аналогична предыдущей. Если допускается содержание взвешенных веществ в воде до 15 мг/л, то вода из осветлителей может непосредственно подаваться потребителю; при необходимости более полного осветления воду пропускают через фильтры с антрацитовой крошкой. Для снижения дозы коагулянта, расход которого обычно составляет 200 .400 мг/л, принимают рециркуляцию осадка в осветлителе.
Перечисленные методы имеют недостатки, среди которых, наиболее значительными являются большой расход и высокая; стоимость реагентов, а также увеличение количества сухого остатка декремнизированной воды.
Магнезиальный метод обескремнивания воды (рис. 22.2), основан на способности соединений магния (оксида магния, обожженного доломита, каустического магнезита и др.) сорбировать из водных растворов коллоидную и молекулярно-дисперсную кремниевую кислоту; причем остаточное содержание Si02 в очищенной воде не превышает 1 . 1,5 мг/л. Для снижения расхода магнезитовых реагентов (в 3 . 4 раза) применяют высокий подогрев и рециркуляцию шлама из отстойников в камеру реакции. Так, при подогреве воды до температуры 35 . 45°С остаточное содержание кремниевой кислоты при обработке оксидом магния не превышает 2 мг/л, до 86 . 105 °С — 0,5 мг/л. Расход MgO в этом случае составляет 5 . 7 мг/мг Si02.
кремниевый кислота вода магнезийный
Рис. 22.2. Установка магнезиального обескремнивания воды при высокой температуре.
1 — греющий пар; 2,8 — подача исходной и отвод декремнизированной воды; 3 — водоподогреватель; 4 — реагентиый бак; 5 — напорный дозатор; 6 — осветлитель с каскадным подогревателем; 7 — фильтр, заполненный оксидом магния или антрацитом; 9 — насос для рециркуляции осадка
Разновидности и принцип действия экстракторов
В ходе
химико-технологического процесса химическому превращению подвергаются
разнообразные вещества, обладающие различными физико-химическими свойствами.
Разнообразна и сама природа химичес ...
d-элементы I-ой группы и их соединения
...
Белки и аминокислоты
Белки – это биологические полимеры, состоящие из аминокислот. Ни один из существующих живых организмов – от вирусов до растений и животных – не может существовать без белка. Правда, ...