Рассмотрим низкотемпературную часть диаграммы Cu – Ni (см. рис. 1.7). Ниже линии солидуса образуется ряд непрерывных твёрдых растворов с решёткой ГЦК. Однако при температурах ниже 342°С наблюдается купол расслаивания на твёрдый раствор на основе меди (обозначим его, как α-фазу) и твёрдый раствор на основе никеля (обозначим его, как γ-фазу). Внутри купола находится смесь этих фаз.
На границе купола α-фаза находится в равновесии с γ-фазой. Это можно записать следующими уравнениями:
(2.4)
Для любого из компонентов 1 и 2 и в α- и в γ-фазе справедливо соотношение:
(2.5)
Обе фазы имеют одинаковую структуру (ГЦК). Это можно объяснить высоким сродством меди и никеля. На диаграмме состояния (рис. 1.7) видно, что сплав плавится конгруэнтно во всём диапазоне концентраций. Более того, линии ликвидуса и солидуса расположены очень близко друг к другу, то есть плавление происходит почти в изотермических условиях, как у чистого металла. Аналогично происходит и испарение сплава.
На основании этого можно записать, что:
(2.6)
Тогда система (2.4) перепишется в виде:
(2.7)
Обозначим через х мольные доли компонентов в α-фазе, а через N – мольные доли компонентов в γ-фазе, и учитывая условия нормировки их на единицу, можно систему уравнений (2.7) с учётом (1.3) и (1.6) переписать в следующем виде:
(2.8)
Если бы были известны мольные доли x и N при 25°С, то можно было бы с помощью (2.8) непосредственно вычислить значения Q при этой температуре. Однако при столь низкой температуре невозможно получить экспериментальных данных о координатах купола расслаивания. Дело в том, что наступление равновесия между фазами происходит, благодаря диффузии атомов, а в комнатных условиях она протекала бы экстремально долго (несколько сотен лет). Поэтому необходимо изучить температурную зависимость энергий смешения и экстраполировать её на уровень комнатных температур.
Если T=const и известны все x и N, то система уравнений (2.8) линейна относительна параметров Q и может быть решена аналитически.
Обозначим . Если теперь перенести правую часть системы (2.8) в левую, то она перепишется в виде:
(2.9)
Выразим из первого уравнения системы (2.9):
(2.10)
Подставим (2.10) во второе уравнение системы (2.9):
(2.11)
Теперь можно выразить в явном виде величину :
Нефть: происхождение, состав, методы и способы переработки
...
Разработка основ технологии и оборудования для электрохимического производства нитрата графита
...
Принципы планирования аудита
Планирование аудита аудиторской организации включает в себя три основных этапа:
• предварительное планирование аудита;
• подготовку и составление общего плана аудита;
• подг ...