Электроаналитические методы в биомедицинских исследованиях
Дипломы, курсовые и прочее / Анализ биологических тканей и жидкостей / Дипломы, курсовые и прочее / Анализ биологических тканей и жидкостей / Электроаналитические методы в биомедицинских исследованиях Электроаналитические методы в биомедицинских исследованиях
Страница 1

Еще на заре развития электрохимических методов анализа (ЭМА) объекты биологии, медицины и фармации привлекали внимание исследователей. Это прежде всего относится к классической полярографии, в меньшей мере к потенциометрии и вольтамперометрии. В 30-х годах XX века чешский исследователь Брдичка обнаружил каталитические волны белков в аммонийно-аммиачных буферных растворах в присутствии солей кобальта. Впоследствии этот метод был применен в медицине для диагностики рака, а затем и для других заболеваний. Он известен как серологическая реакция Брдички. Достижения классичекой полярографии в биологии, медицине и фармации обобщены в монографии М. Бржезины и П. Зумана, которая оказала самое плодотворное влияние на развитие этой области ЭМА. Большая часть пионерских работ в этой области анализа были выполнены исследователями, которые имели базовое образование фармацевта, что не могло не сказаться на применении этого метода в биомедицинских исследованиях С помощью методов ВА определяли различные метаболиты, белки, идентефицировали ферменты, оцнивали их активность по продуктам ферментативных реакций, исследовали процессы в микроорганизмах, суюклеточных культурах, в тканях по продуктам их жизнедеятельности. Кроме того, эти методы применяли для получения электрохимических характеристик веществ, участвующих в переносе электронов в процессе дыхания и фотосинтеза, при моделировании окислительно восстановительных процессов в живой клетке, а также для исследования структурных особенностей биологических макромолекул и биомембран и т.д. В 60-х годах с появлением ионоселективных электродов (ИСЭ) стало возможным потенциометрическое определение катионов и анионов как in vitro, так и in vivoв растворах, включая цельную кровь.

Прогресс в области ионометрии и разработки новых ИСЭ с улучшенными характеристиками, в частности, на основе полевых транзисторов привел к появлению разнообразных потенциометрических сенсоров, устройств и приборов для определения органических и неорганических, в том числе и лекарственных, соединений в различных условиях (в потоке жидкости, в очень малых объемах растворов и т.д.). Современная биохимическая лаборатория имеет возможность использовать ионометрические установки как для прямого определения, так и для потенциометрического титрования в водных и неводных средах.

Достигнутые успехи не означали отсутствие проблем, обусловленных перманентными требованиями к необходимой воспроизводимости, надежности, чувствительности, а также селективности определений, особенно для электродов-сенсоров с амперометрическим откликом, которые порой трудно достигались, поскольку компоненты, определялись в сложных по составу матрицах. Потенциометрические сенсоры на основе мембран с включенными в них электроактивными органическими соединениями показали достаточно высокую селективность при определении этих же соединений в испытуемом растворе. Их используют при анализе порошков, суппозитарий, таблеток и других лекарственных форм; при этом не требуется сложная пробоподготовка.

Новый этап развития ЭМА применительно к обсуждаемым объектам связан с применением имообилизированных биоматериалов как реагентов нового поколения для модифицирования электродов и создания на их основе биосенсоров.

Функциональо биосенсоры сопоставимы с датчиками живого организма – биорецепторами, способными преобразовывать все типы сигналов, поступающие из окружающей среды, в электрические, которые легко измерить.

Биосенсоры, с одной стороны, можно рассматривать как устройства, работающие на принципах биологического распознавания определяемых молекул или других частиц. Поэтому их можно отнести к категориям биологических и биохимических методов анализа.

С другой стороны, биосенсоры – это биоэлектронное устройство, включающее чувствительный элемент, тесно связанный с физическим преобразователем либо интегрированный с ним, чаще всего с электродом. Интерес к биосенсорам обусловлен их широким потенциальным применением в контроле состояния окружающей среды и охране здоровья человека.

Многообразие биосенсоров объясняется различной природой биоматериала, типом физического преобразователя, способами регистрации электрического сигнала. Сама их конструкция может быть тесно связана с применением.

Страницы: 1 2 3

Смотрите также

Выводы
Таким образом, в данной работе рассмотрен акридон, его свойства, способы получения и применение. Приведены различные механизмы получения гетероциклических соединений реакциями конденсации. Предложе ...

Процесс компаундирования нефтепродуктов
Промышленное производство нефтепродуктов состоит из следующих основных этапов: первичная, вторичная переработка нефти и процессы смешения (компаундирования). Первичная переработка (пря ...

Производство фенола
Фенол С6Н5ОН—бесцветное кристаллическое вещество со специфическим запахом, температурой плавления 43°С, температурой кипения 181°С, удельным весом 1,071. Фенол применяется в производстве ...