В ряду адсорбентов особое место принадлежит активным углям), которые в силу специфичности своих свойств адсорбируют из воды преимущественно органические вещества.
Адсорбционная способность активных углей является следствием сильно развитой поверхности и пористости. Удельная поверхность углей составляет обычно 400 – 900 м2/г; адсорбционные свойства в значительной мере зависят от структуры, величины пор, распределения их по размерам. Структура угля оказывает заметное влияние на скорость адсорбции, определяет форму изотермы и число адсорбированных молекул различных размеров. В зависимости от преобладающего размера пор активные угли условно разделены на три структурных типа: крупнопористые, мелкопористые и угля смешанного типа. Размеры макропор оцениваются в (1 ÷ 2)·10-4 мм, их удельная поверхность 0,5 – 2 м2/г. Радиус переходных пор 1,6·10-7 – 2·10-4 мм, удельная поверхность 20 – 70 м2/г. Средний радиус микропор составляет менее 1,6·10-7 мм, а удельная поверхность – сотни м2/г. Макропоры и переходные поры играют, как правило, роль транспортных каналов, а адсорбционную способность определяет в основном микропористая структура активных углей.
В табл. 2 приведена характеристика наиболее часто применяемых активных углей.
Кроме активных углей при деструктивной адсорбционной очистке промышленных вод применяют бурый уголь, полукокс, кокс, торф, шлак, золу, гидроксиды металлов (в основном для извлечения высокомолекулярных соединений и разрушения коллоидных систем) и другие адсорбенты.
Регенерация активного угля является одним из основных вопросов, возникающих при адсорбционной очистке промышленных сточных вод. Цель регенерации – с одной стороны, десорбция адсорбированных молекул (при регенеративной очистке воды) или деструктивное их разрушение и, с другой стороны, восстановление адсорбционной способности активного угля.
Для удаления органических веществ с поверхности активного угля используют вытеснительную десорбцию, смещение равновесного состояния системы с помощью изменения концентрации адсорбата и температуры процесса, перевод молекул, например, слабых электролитов в диссоциированную (ионную) форму. При деструктивной регенерации применяют окисление химическими реагентами и термическую деструкцию.
Легколетучие органические вещества (например, этиловый спирт, бензол, толуол) удаляют обычно высокотемпературной десорбцией в парогазовой фазе. В качестве десорбирующего агента применяют воздух, инертные газы, острый насыщенный или перегретый водяной па, пары органических веществ. При использовании воздуха температура, как правило, не превышает 120 – 140°С. в случае перегретого пара – 200 – 300°С, дымовых и инертных газов – 300 – 500°С.
При жидкофазной вытеснительной десорбции обычно используют низкокипящие легко перегоняющиеся с водяным паром органические растворители (например, метиловый спирт, бензол, толуол, дихлорэтан бутилацетат), из которых адсорбция адсорбата происходит хуже, нежели из воды. Десорбция проводится на холоде или при нагревании, по окончании десорбции растворитель отгоняется из угля острым водяным паром или инертным теплоносителем.
Органические соединения удаляют из активного угля, промывая его водным раствором кислот (десорбция оснований) или щелочей (десорбция кислот).
При деструктивной регенерации, когда адсорбированные вещества не представляют технической ценности, обычно применяют термические и окислительные (окисление хлором, озоном) методы. На рис. 9 приведена технологическая схема термической регенерации высокодисперсного активного угля.
Рис.9. Схема установки термической регенерации высокодисперсного активного угля
1 – сборник отработанного угля; 2 – весовой ленточный питатель; 3 – пневматический затвор; 4 – регенератор; 5 – камера сгорания; 6 – сепаратор; 7 – вытяжной вентилятор; 8 – вентилятор; 9 – шнек; 10 – фильтр; 11 – пневматический транспортер; 12 – сборник регенерированного угля; 13 – компрессор.
При термической регенерации потери активного угля составляют около 5 – 10%. В процессе многократного использования активный уголь частично дезактивируется, вследствие чего часть его заменяется свежим углем.
Термическая регенерация – процесс весьма сложный, многостадийный, затрагивающий не только сорбат, но и сам сорбент. Термическая регенерация приближена к технологии получения активных углей. При карбонизации сорбатов различного типа на угле большая часть примесей разлагается при 200 – 3500ºС, а при 4000ºС обычно разрушается около половины всего адсорбата. CO, CO2, CH4 - основные продукты разложения органического сорбата, выделяются при нагревании до 350 – 6000ºС. В теории стоимость такой регенерации составляет 50% стоимости нового активного угля. Это говорит о необходимости продолжения поиска и разработки новых высокоэффективных методов регенерации сорбентов.
Методы выделения и анализа кумаринов в лекарственное растительное сырьё
Физиологическая роль кумаринов до конца не установлена. Известно, что они
участвуют в регуляции роста растений, являясь антагонистами ауксинов; поглощают
ультрафиолетовые лучи, защищая молод ...
Свойства азота
Азот – элемент с седьмым
порядковым номером, относящийся к V главной подгруппе второго периода системы.
По распространенности в земной коре азот занимаем 31-е место – 0,025% (по
другим данн ...
Полимерные композиты на основе диальдегилцеллюлозы и полигуанилинметакрилата
Среди
полимеров, нашедших широкое применение в различных областях жизнедеятельности
человека, важное место занимает целлюлоза, как постоянно возобновляемый в
природе полимер, и ее производн ...