В энтропийных методах расчета константы равновесия
ln Kp = - ΔH0т / RT + ΔS0т/ R ≈ - ΔH / RT + ΔS/ R ≈ - А / Т + В
где ΔH0т и ΔS0т - тепловой эффект реакции и изменение энтропии при температуре Т;
∆H и ∆S –средние значения теплового эффекта реакции и изменения энтропии в изучаемом интервале температур.
Зависимость равновесного состава газа от температуры в любой из приведенных реакций определяется изменением константы равновесия Кр, т.е. уравнением изобары реакции d(ln Kp) / dT = ΔH0т / RT2 и качественно – по правилу Ле Шателье. В реакциях эндотермических (ΔН > 0) повышение температуры смещает положение равновесия в прямом направлении, т.е. в сторону уменьшения концентрации газа-восстановителя.
Равновесный состав газа в реакциях восстановления оксидов железа водородом и СО приведен на рисунках 3-6. На всех по оси ординат представлен объемный процент газа восстановителя, поэтому поле каждого рисунка, кроме рис.6, ограничено сверху асимптотой %В = 100.
Линии ( % В = φ(t) ) на рис. 3, 4, 5, 6, 7, описывающие равновесие эндотермических реакций - убывающие кривые, а для экзотермических реакций – возрастающие.
По эмпирическим уравнениям зависимости константы равновесия реакции от температуры вида lg Ka = A/T + B можно рассчитать средние значения теплового эффекта реакции ∆H и изменения энтропии ∆S:
∆H = - 2,3 R A , Дж ; ∆S = 2,3 R B, Дж/К
Средние значения теплового эффекта реакции ∆H и изменения энтропии ∆Sв интервале температур 300-1300оС.
Таблица 5.
Реакция |
1 |
2 |
3 |
4 |
1а |
2а |
3а |
4а |
∆Н, кДж |
-52,0 |
35,3 |
-13,1 |
-1,04 |
-15,5 |
71,3 |
23,4 |
35,5 |
∆S Дж/К |
40,9 |
40,1 |
-17,2 |
-2,96 |
57,7 |
73,5 |
16,2 |
30,4 |
Реакции 1,3, 4, 1а –экзотермические, а реакции 2, 2а, 3а, 4а – эндотермические.
В реакциях восстановления оксидов железа монооксидом углерода ∆Н3>∆Н4<∆Н2, а водородом ∆Н3а<∆Н4а<∆Н2а, что приводит к соответствующей разнице в темпе кривых на рисунках 3 и 4.
В системе Fe – O известны оксиды FeO, Fe3O4, и Fe2O3, из которых монооксид железа устойчив лишь при температуре выше 570оС. Равновесные составы газа, приведенные в таблицах 3 и 4, в реакциях с участием этого оксида не реализуются, и на рисунках 3 и 4 кривые 2, 3, 2а и 3а выполнены пунктирно при t < 570оС. При температуре выше 570оС не реализуются линии реакций 4 и 4а.
Реакции 1 и 1а восстановления высшего оксида железа отличаются высоким значением константы равновесия (Кр " 1), поэтому протекают необратимо в прямом направлении, и равновесная (остаточная) концентрация газа восстановителя составляет тысячные доли процента (рис. 5). Различный темп кривых на этом рисунке объясняется разницей тепловых эффектов реакций 1 и 1а.
Равновесные кривые на рис. 3, 4, 5 делят поля рисунков на области устойчивости отдельных конденсированных фаз. Выше равновесной кривой фактический процент газа восстановителя больше равновесного, и устойчивой фазой является восстановленная форма оксида железа, а под кривой – окисленная форма. Таким образом, на названных рисунках показаны области устойчивости отдельных фаз.
Физические основы ограничения притока вод
Показаны факторы
преждевременного обводнения продуктивных пластов и скважин при заводнении
многопластовых нефтяных месторождений. Рассмотрены методы ограничения движения
воды в пористой сре ...
Химические свойства неметаллов и их соединений
...
Монослой на поверхности
воды
Наряду с полностью гидрофильными и
гидрофобными молекулами существуют еще и молекулы вроде русалок – одна их часть
гидрофильная, а другая гидрофобная. [7]Такие молекулы получили название амфифильных ...