при описании реакции Фриделя - Крафтса. Таким образом, структуры XVIII и XIX отделены от начальных и конечных продуктов реакции энергетическими барьерами, которые и определяют константу скорости превращений исходного XVI в промежуточный продукт и последнего в продукт XVIa и соответственно XVII в промежуточный продукт и далее - в XVIIa. Конечно, можно выдвинуть контрвозражение, что если оба переходных состояния, отделяющие промежуточный продукт, близки к нему по геометрии и структуре, то они и энергетически близки. Тогда энергетические барьеры, отделяющие промежуточный продукт, невысоки, а следовательно, энергетический уровень этого продукта все же приблизительно определяет скорость реакции (постулат Хэммонда).
В 1967 г. Олах описал эксперимент, который, казалось бы, непосредственно доказывает существование фенониевых ионов по крайней мере в некоторых случаях. Оказалось, что п-(2'-хлорэтил) -анизол, растворенный в избытке SbF5 при - 80 °С, дает острый одиночный пик (синглет) в спектре ЯМР в области метиленовых протонов. Это означает, что обе метиленовые группы становятся эквивалентными после удаления хлор-аниона, т. е. после образования карбониевого иона:
Если бы метиленовые группы были неэквивалентны, то в спектре ЯМР в этой области было бы два триплета, относящихся к разным метиленовым группам. Однако на деле эти данные не исключают быстрой обратимой изомеризации «неклассического» карбкатиона, т. е. равновесия типа:
При этом скорость взаимопревращений классических карбкатионов должна быть настолько велика, чтобы ЯМР не мог уловить каждый карбкатион как отдельную частицу.
Сопоставляя теоретические соображения Хюккеля и экспериментальные данные Брауна, можно сказать, что «неклассический» катион правильнее представлять не как самостоятельно существующую частицу и не как сумму резонирующих «классических» катионов, а как переходное состояние перегруппировки, которое находится не в минимуме, а в максимуме потенциальной кривой (на вершине барьера, разделяющего два переходящих друг в друга «классических» катиона I и II).
Теория строения, многообразие, классификация и номенклатура
органических соединений. Типы химических реакций
Многообразие органических соединений, их свойств
и превращений объясняет теория химического строения (А. М. Бутлеров,
1861–1864).
Химическое строение – это определенная последовательность располо ...
Комплексные соединения в аналитической химии
Обширную группу
химических соединений составляют комплексы, в молекулах которых всегда можно
выделить центральный атом или ион, вокруг которого сгруппированы другие ионы
или молекулярные гр ...
Углеводы как главный источник энергии в организме человека
...