Одним из результатов компьютерного расчета является массив точек: энергия как функция в данном случае шести внутренних координат комплекса (HF)2 (число внутренних координат совпадает с числом колебательных степеней свободы молекулярной системы). Рельеф этой шестимерной поверхности достаточно сложный, с минимумами, максимумами, седловыми точками. Представление о двумерном сечении потенциальной поверхности основного электронного состояния в зависимости от угловых координат q1 и q2 дает рис. 2, причем все остальные геометрические переменные подстроены так, чтобы значения энергии для них были минимальными. На рис. 2 изображены рассчитанные контуры изоэнергетических линий, за нуль отсчета принята энергия разделенных молекул мономеров HF, синим цветом отмечены области отрицательных энергий, где комплекс (HF)2 существует как единое целое, красным - область положительных энергий. Изоэнергетические контуры сгущаются около стационарных точек - минимумов, седловых точек. Координаты точки наиболее глубокого минимума (темно-синий цвет на рис. 2 около | q1 | = 7?, q2 = 69?) определяют равновесную геометрическую конфигурацию комплекса. Рис. 2 симметричен относительно диагонали поля графика, что отражает эквивалентность двух структур комплекса
На рис. 1 показаны те значения координат, которые были получены в наиболее совершенном в настоящее время квантово-химическом расчете. Выше приведены величины, определенные из экспериментов, и согласие результатов обоих подходов к исследованию комплекса (HF)2 можно считать великолепным. Из расчета определяются и энергия связи по разности энергий в равновесной геометрической конфигурации (HF)2 и энергии двух невзаимодействующих молекул HF. Наилучшее полученное значение (19,23 кДж/моль) также прекрасно согласуется с экспериментально определенной энергией (19,35 ? 0,71 кДж/моль).
Еще одна серия экспериментальных данных позволила определить частоты колебаний комплекса. Решение колебательной задачи представляет следующий этап моделирования структуры молекул после построения поверхности потенциальной энергии. В простейшем приближении необходимо определить кривизну потенциальной поверхности по отношению ко всем внутренним координатам около положения минимума и оценить тем самым коэффициенты жесткости пружинок, моделирующих колебания вдоль связей и углов молекулы. Совокупность коэффициентов жесткости, рассчитываемых как вторые производные энергии по координатам, образует силовое поле молекулы. Далее по известным массам атомов, равновесным геометрическим параметрам и силовому полю без особого труда вычисляется набор частот колебаний. Для комплекса (HF)2 такая задача решалась неоднократно, и вычисленные частоты хорошо совпадают с экспериментальными.
Фотометрическое определение благородных металлов
Фотометрические
методы определения элементов основаны на простой зависимости между
интенсивностью окраски раствора и концентрацией вещества в растворе. Для
фотометрического определения испо ...