Подадим мысленно сверху на эту колонку ток элюента (хотя бы воды). Он будет свободно протекать между гранулами — вниз к выходу из колонки. Если крупные молекулы настолько велики, что совершенно не проникают в пределы гранул (поры для них слишком малы), то эти молекулы вместе с током элюента, без задержки будут двигаться к выходу из колонки. Предположим еще, что мелкие молекулы настолько малы, что все ячейки внутри гранул будут для них легкодоступны. Тогда (если скорость элюции не слишком велика) эти малые молекулы в результате диффузии быстро займут весь совокупный объем жидкости во внутренних ячейках гранул. Разумеется, диффузия будет идти и в обратном направлении так, что концентрация малых молекул в гранулах и в свободной жидкости между ними поначалу окажется одинаковой. Однако вскоре малые молекулы, которые окажутся вне гранул, током элюента продвинутся немного вниз по колонке. Здесь они встретят слой еще «пустых» гранул и будут диффундировать внутрь них. В то же самое время в слое, откуда эти молекулы ушли, нарушится равновесие диффузии и малые молекулы из гранул станут преимущественно выходить наружу, в элюент.
Процессы эти будут происходить в течение всего хода элюции. За это время каждая из мелких молекул успеет (и не один раз) побывать в каких-нибудь гранулах и выйти из них. Для слоя мелких молекул в целом это будет означать большую потерю времени с точки зрения продвижения этого слоя вниз к выходу из колонки. (Напомню, что жидкость внутри гранул не течет.) В результате слой мелких молекул сильно отстанет от слоя крупных молекул.
Для молекул среднего размера некоторые ячейки близ поверхности гранул окажутся доступными. Они туда будут «заходить». Но диффундировать глубоко внутрь гранул им, как правило, не удастся, они быстрее будут выходить наружу и равновесие диффузии будет в пользу свободной жидкости между гранулами. В силу этого обстоятельства молекулы среднего размера в целом, как слой, будут двигаться вниз по колонке быстрее, чем мелкие молекулы, но все же значительно медленнее, чем крупные, поскольку даже только на заход в ячейки гранул с поверхности будет расходоваться некоторое время .
Колоночная гель-фильтрация широко применяется для решения двух основных задач:
1. Быстрого освобождения крупных молекул (белков, нуклеиновых кислот и их комплексов) от находящихся в том же растворе солей или низкомолекулярных предшественников синтеза:
аминокислот или нуклеозидтрифосфатов (особенно радиоактивно меченых), а также во многих других случаях очистки биополимеров от сопутствующих им мелких молекул. В этих случаях целесообразно использовать короткие (10-20 см) колонки относительно большого диаметра (2-3 см) и заполнять их крупными гранулами с малыми порами. Объем препарата, вносимого на колонку, может составлять 20-25% от полного объема колонки. Очистка происходит быстро (примерно за 1 час). Разбавление очищенного препарата оказывается незначительным (10-20%), так как он выходит из колонки не «пиком», а протяженной «площадкой», расширение которой идет только за счет диффузии на ее переднем и заднем фронте. При работе с микроколичествами можно в качестве колонки использовать цилиндрик пластмассового шприца на 1 мл.
Положив на дно кусочек стеклянной ваты, его плотно набивают гранулами, оставив сверху свободные 0,1 мл для заполнения их смесью ДНК и ее предшественников в растворе буфера.
Химия каренов
Одним из наиболее
распространенных монотерпеновых углеводородов является 3-карен —
3,7,7-триметилбицикло[4.1.0]гепт-3-ен (1), входящий в состав многих
эфирных масел и скипидаров.
мо ...
Жизнь и научные открытия А.Л. Лавуазье и К.Л. Бертолле
Лавуазье и Бертолле – без сомнения, самые выдающиеся
ученые-химики своего времени. И по праву считаются основателями современной
химии, создателями принятой ныне химической номенклатуры.
...
Каталитический риформинг
Бензины являются
одним из основных видов горючего для двигателей современной техники.
Автомобильные и мотоциклетные, лодочные и авиационные поршневые двигатели потребляют
бензины. В настоящ ...