Далее, аналогично подуровням четвёртого и пятого периодов, в шестом периоде продолжают заполняться: подуровень 5d - размещением «по два из трёх» от 71Lu 6s25d1 до 80Hg 6s25d10, образуя особую группу d-переходных металлов Os,Ir,Pt, а также Au и Hg – все «голубые»; подуровень 6p – сочетанием «по два из трёх», образуя элементы от 81Tl 6s25p1 до 86Em 6s26p6. Так Природа построила все элементы шестого периода.
Аналогично шестому, усложняются элементы седьмого периода от 87Fr 7s1 до 118Uuo 7s27p, только «ещё формируемые» подуровни возрастают на единицу.
Так, на подуровне 5f размещением «по два из четырёх» строятся очередные 14 элементов, вновь образующие отдельную побочную подгруппу – актиноидов.
У актиноидов различие энергетических состояний электронов подуровней 5f и 6d ещё меньше, чем у лантаноидов 4f и 5d. Поэтому «добавленные» электроны первых актиноидов легко переходят на 6d, становясь валентными, повышая общую валентность элемента вплоть до +6. Эта сверхлёгкая возбудимость актиноидов создаёт трудности точного установления их действительных электронных конфигураций. От Th до Am энергии заполняемых орбиталей подуровней 5f, 6d, 7s и 7p очень близки, они способны перекрываться, а энергии перехода электронов между ними лежат в пределах обычных химических связей. Но чётко установленная данным сообщением нормальная форма элементов (в круглых скобках) позволяет выстроить актиноиды по-новому.
Отдельная группа актиноидов должна начинаться с самого 89Ac (7s25f1)7s26d1. Далее идут: 90Th (7s25f2)7s26d2, 91Pa (7s25f3)7s26d15f2,7s26d25f1, 92U (7s25f4)7s26d15f3, 93Np 7s25f5, 94Pu 7s25f6, 95Am 7s25f7 – верхний ряд, построенный комбинациями (ad,bd,cd и начало dd); 96Cm (7s25f8) 7s26d15f7, 97Bk 7s25f9, 98Cf 7s25f10, 99Es 7s25f11, 100Fm 7s25f12, 101Md 7s25f13, 102No 7s25f14 – нижний ряд, построенный комбинациями (da,db,dc и конец dd). «Зеркальный» излом свойств актиноидов - на 96Cm (сравните соответствующие комбинации).
Бывший последним в побочной группе актиноидов 103Lr 7s26d1 исключается из неё и помещается в клеточку Периодической таблицы, где был ранее 89Ac. С него начинает заполняться подуровень 6d размещением «по два из трёх» до 112Cp 7s26d10, а потом - подуровень 7p сочетанием «по два из трёх» от 113Uut 7s27p1 до 118Uuo 7s27p6, аналогично шестому периоду.
Таким образом, несмотря на отклонения отдельных элементов от задуманной Природой нормальной формы, кажущуюся непоследовательность из-за выполнения жёстких физических условий, наблюдается стабильное, чёткое соблюдение математических операций усложнения электронных оболочек химических элементов в строгой последовательности, начертанной Идеальной математикой:
сложением одной единицы
умножением двух чисел
сочетанием «по два из трёх» чисел
размещением «по два из трёх» чисел
размещением «по два из четырёх» чисел
a
aa
ab,ac,bc
aa,ab,ac,bc,ba,ca,cb,bb,cc
aa,ab,ac,bc,ba,ca,cb,bb,cc,ad,bd,cd,dd,da,db,dc
Чёткое соблюдение последовательности комбинаций математических операций повторялось на каждом следующем периоде (рисунок), неоднократно! Более того, каждая предыдущая операция всеми своими комбинациями постоянно вкладывалась во все последующие. Эта стабильность создала основу повторяемости, преемственности – последовательность комбинаций стала математической причиной периодичности Периодического закона Д.И.Менделеева! Благодаря выявленным комбинациям – периодичность становится очевидной, более наглядной. Именно она позволяет выстраивать таблицу элементов спиралями (следующий виток включает в себя весь опыт предыдущих витков и своё новое) и другими экзотическими пространственно расширяющимися формами.
Комбинаторика Природы ограничилась соединениями только «по два» - не в этом ли причина «двухкомнатных» орбиталей? И этих простейших математических порядков первых четырёх 1й-4й ступеней Идеальной математики хватило для сотворения всего многообразия химических элементов!
Уместен вопрос: есть ли граница натурального ряда химических элементов?
Можно отметить, что образование элементов комбинациями операций Идеальной математики шло следующими этапами.
1й этап. Образуется элемент 1H комбинацией сложения a. Повторением 1го этапа комбинацией умножения aa образуется 1й период.
2й этап. Образуются элементы 2го периода повторением комбинаций всего 1го периода с добавлением новых комбинаций сочетания «по два из трёх» (ab,ac,bc). Повторением комбинаций всего 2го этапа образуются элементы 3го периода.
3й этап. Образуются элементы 4го периода повторением комбинаций всего 2го этапа с добавлением новых комбинаций размещения «по два из трёх» (ba,ca,cb,bb,cc). Повторением комбинаций всего 3го этапа образуются элементы 5го периода.
4й этап. Образуются элементы 6го периода повторением комбинаций всего 3го этапа с добавлением новых комбинаций размещения «по два из четырёх» (ad,bd,cd,dd,da,db,dc). Повторением комбинаций всего 4го этапа образуются элементы 7го периода.
Основные химические законы
Когда впервые
обнаруживается, что некоторая идея объясняет или коррелирует многие факты, то
такую идею называют гипотезой. Гипотезу можно подвергнуть дальнейшей
проверке и экспериментально ...
Химические элементы - токсиканты атмосферы и воды
Развитие промышленности неразрывно связано с
расширением круга используемых химических веществ. Увеличение объемов
применяемых
пестицидов, удобрений и других химикатов - характерная ...
Углеграфитовые материалы
Все виды
углеграфитовых материалов производятся на основе углерода. Ассортимент изделий
весьма многочислен, а каждый вид характеризуется оригинальными свойствами.
Основную роль в
создани ...