Первое начало термодинамики
Учим химию / Химическая термодинамика / Учим химию / Химическая термодинамика / Первое начало термодинамики Первое начало термодинамики
Страница 2

Разность энтальпий химической реакций обратно по знаку теп­ловому эффекту реакции при постоянном давлении. Для вычисления энтальпии исходим из соображений, что Q = ΔH; приравниваем частные производные по температуре:

(9)

или d(ΔН)=CpdТ, где Ср—теплоемкость при постоянном давле­нии. При расчете ΔН следует учитывать не только изменение энер­госодержания системы в зависимости от температуры, но и из­менение агрегатных и полиморфных состояний, при котором происходит поглощение энергии при постоянной температуре:

(10)

Таким образом, энтальпия — сложная математическая функция, оп­ределяющая энергию, необходимую для приведения системы в дан­ное состояние, и учитывающая изменение внутренней энергии и совершаемую работу.

На рисунке приведены кривые зависимости энтальпии от темпе­ратуры для газов, используемых как плазмообразователи в плазмотронах.

Для исследования процессов, происходящих в материальных си­стемах, мы пользуемся не абсолютными значениями энтальпий, а их изменением (разностью) между начальным и конечным состояниями системы. Разности энтальпий мы можем измерять с любой степенью точности, отсчитывая энтальпии не от абсолютного

нуля, а, от любого, но всегда одного и того же уровня. За такой уровень приняты стандартные условия: Т=298,15 К, р=1,013∙105Па.

Кроме того, для термохимических расчетов приняты следующие два условия:

1. Разность энтальпий простых веществ (ΔН0) в состоянии, устойчивом при стандартных условиях, принимается равной нулю. Например:, но (так как для образования атомар­ного водорода при стандартных условиях надо затратить энергию диссоциации, равную 217,9 кДж/моль).

2. Разность энтальпий сложного вещества обратна по знаку и равна тепловому эффекту при постоянном давлении () реак­ции его образования из простых веществ в состоянии, устойчивой при стандартных условиях, т.е. энтальпии образования. Например: ¾ 241,8 кДж/моль; + 90,37 кДж/моль.

В настоящее время стандартные разности энтальпий (ΔН0) и их зависимости от температуры () можно найти в справочной литературе для очень большого числа неорганиче­ских и органических соединений.

Термохимические расчеты с использованием табличных данных значительно упростились. Рассмотрим пример расчета разности энтальпий химической реакции в общем виде для уравнения

aA+bB=cC+dD

где А, В, С, D — символы реагирующих веществ: а, Ь, с, d — стехиометрические коэффициенты.

Исходные вещества (аА+bВ) соответствуют начальному состоя­нию системы, и сумма их энтальпий вычитается, так как они в ре­зультате процесса исчезают, конечные продукты (cC+dD), состав­ляющие конечную систему, появляются в процессе, и их энтальпии входят со знаком плюс. Если данное вещество в уравнение хими­ческой реакции входит с коэффициентом, отличным от единицы, то при суммировании энтальпий эти коэффициенты надо взять как множители.

Во избежание возможных ошибок надо суммирование энтальпий производить непосредственно под уравнением химической реакции

aA+bB=cC+dD

Подставляя значения энтальпий из справочной литературы, нахо­дим реакции.

Чтобы получить разность энтальпий реакций для более высоких температур, чем стандартные, используют зависимость разности энтальпий от температуры и учитывают при этом изменения энер­гии, потребной для нагрева данных веществ и для изменения их фазовых состояний:

(11)

Для многих веществ эти функции рассчитаны и приведены в справочных таблицах (ΔНT ¾ Н0).

Если абсолютное значение разности энтальпий реакций доста­точно велико (300—400 кДж), то в первом приближении темпера­турной зависимостью можно пренебречь, так как теплоемкости из­меряются в Дж/(моль∙К), а разности энтальпий—в кДж/моль, т.е. на 3 порядка выше.

Страницы: 1 2 3

Смотрите также

Белки и нуклеиновые кислоты
...

Исследование возможностей синтеза фенилселиконатов натрия, содержащих в своем составе атом кобальта
Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение Дальневосточный Федеральный Университет Институт химии и прик ...

Cульфоксидный комплекс гидрохинона как фотоинициатор полимеризации метилметакрилата
Рассматривается поведение сульфоксидного комплекса гидрохинона в радикальной полимеризации метилметакрилата. Показано, что в отличии от гидрохинона такой комплекс участвует в фотоинициирова ...