(4.10)
Подставляя (4.9) и (4.10 ) в (4.8), получаем
(4.11)
Каждый из одномерных операторов дифференцирования преобразует лишь ту функцию-сомножитель которая содержит его же аргумент. Остальные функции-сомножители без нарушения равносильности уравнения (4.11) можно вынести влево за такой оператор:
4.1.2.10 соответствии с методом Фурье, слева домножаем выражение на и получаем
Отделяя любое из слагаемых, например, первое, вводим первую из констант связывающих отдельные компоненты решения
и т.д.
(4.12)
4.1.2.11. Суммируя левые части уравнений системы (4.12) и все константы в правой части, получаем
т.е. или (4.13)
Таким образом, параметры отдельных одномерных дифференциальных уравнений оказываются связанными между собой равенством (4.13).
4.1.2.12.При разделении переменных многомерного дифференциального уравнения можно их предварительно группировать. В таком случае в выражениях (4.8 ) – (4.10)под каждым из символов может подразумеваться целый набор переменных. Именно таким образом производится анализ движения в системе многих частиц. Вначале очень сложное и громоздкое исходное уравнение всегда претерпевает подготовительное преобразование, состоящее в том, что производится выделение отдельных уравнений, относящихся к индивидуальным частицам.
4.1.2.13. Встречаются ситуации, когда, на первый взгляд, разделить переменные невозможно, так как оператор содержит сложные функции, включающие все эти переменные либо часть из них. В таких случаях часто к цели ведёт замена переменных, например, переход от декартовых координат х, у к полярным или к комбинации исходных декартовых. Преобразования, связанные со сменой координат, и в классической и в квантовой механике являются самым обычным делом. Выбор подходящей системы переменных часто подсказывает выражение потенциальной энергии . Ниже мы встретимся с такими примерами.
4.1.2.14. Следует отметить, что простая аддитивная форма оператора не является непременным условием разделения переменных в дифференциальном уравнении (4.8). Встречаются и более сложные конструкции операторов, допускающие возможность использования основных принципов решения дифференциальных уравнений в частных производных по методу Фурье с разделением переменных. Ниже мы столкнемся с такими случаями.
Различным комбинациям квантовых чисел может отвечать одно и то же значение суммы квадратов В этом случае все такие состояния относятся к одному вырожденному уровню. Обозначим их число – кратность вырождения уровня – буквой g. На примере шести низших уровней кубического "ящика" проследим их вырождение . Для этого, как обычно, составим таблицу состояний и уровней (табл. 4. 1.) и изобразим энергетическую диаграмму этой системы ( рис. 4.1.).
Квантовые числа состояний () |
Энергетические уровни
|
Кратность вырождения уровня g |
1,1,1 |
3 |
1 |
1,1,2 1,2,1 2,1,1 |
6 |
3 |
1,2,2 2,1,2 2,2,1 |
9 |
3 |
1,1,3 1,3,1 3,1,1 |
11 |
3 |
2,2,2 |
12 |
1 |
1,2,3 1,3,2 2,1,3 3,1,2 2,3,1 3,2,1 |
14 |
6 |
Обсуждение результатов
Полученные ранее на кафедре ХТООС МИТХТ им. М.В.Ломоносова
данные [25, 26] показывают, что в системах KI - PdI2 –
фенилацетилен (ФА) и KI - PdI2 – метилацетилен (МА) наблюдаются
развитые релаксацио ...
Дмитрий Иванович Менделеев
...
Заключение
В этом реферате я показал
основные свойства 3-х классов полимеров. Из всего вышеописанного можно ответить
на вопрос: какой полимер можно использовать на производстве для изготовления
того или иного ...