. (4. I)
4.1.2.4. В самом простом случае для разделения переменных в уравнении (4.1) необходимо, чтобы оператор допускал группировку всех выражений и действий над каждой из переменных в отдельные слагаемые, например и . Вводимые нами символы операторов красноречиво указывают на преобразуемые ими переменные и не требуют дополнительных пояснения. Итак, оператор должен быть представлен в аддитивной форме
(4.2)
Для разделения переменных в дифференциальном уравнении (4.1) искомую функцию F(x,y) следует представить в виде произведения двух сомножителей X(x) и Y(у), каждый из которых является неизвестной функцией лишь одного аргумента:
, (4.3)
или
4.1.2.5. Аддитивный характер оператора и мультипликативная структура функции позволяет разделить переменные в дифференциальном уравнении (4.1). Подставив в него (4.2) и (4.3), получим
(4.4)
Дальнейшая процедура состоит в следующем:
слева умножаем выражение (4.4) на ;
преобразуем дифференциальное уравнение (4.4), учитывая, что операторы и не затрагивают чужую переменную и не изменяют функции от неё;
производим сокращения и
разделяем переменные.
или (4.5)
4.1.2.6. В силу независимости аргументов функций X и Y, а также и преобразований над ними, выражение (4.5) следует приравнять постоянной величине, а именно
(4.6)
Цепочка равенств (4.6) – это не что иное, как система двух дифференциальных уравнений, связанных между собой лишь постоянной , которая в каждой конкретной задаче находится из дополнительных математических или физических условий. Систему можно записать так
(4.7)
Каждое из дифференциальных уравнений системы (4.7) включает лишь одну переменную и решается самостоятельно.
4.1.2.7. Такая схема легко распространяется на конфигурационное пространство В таком случае общее выражение для дифференциального уравнения (4.1) выглядит следующим образом
. (4.8)
4.1.2.8. Одномерные операторы–слагаемые , на которые разлагается многомерный оператор , с одной стороны, построены на разных переменных, а с другой стороны, могут иметь разную конструкцию, хотя это и не обязательно. Последнее их отличие отметим ниже индексами a,b,c . Основное условие возможности разделения переменных выражается формулой, определяющей аддитивную структуру оператора
(4.9)
4.1.2.9. Аддитивность оператора (4.9) порождает мультипликативность решения уравнения (4.8), т.е.
Формулы веществ-составление
Предлагаемое учебное пособие
содержит материал необходимый для полноценного обучения основам общей химии. В
книге приведены правила общей химии, которые подробно разобраны на конкретных
при ...
Фазовые равновесия
Гетерогенная
система - система,
состоящая из нескольких фаз.
Фазой называется
совокупность гомогенных (однородных) частей системы, одинаковых по составу,
химическим и физическим свойств ...
Разработка участка по получению магнитопласта на основе полиамида-6 методом литья под давлением
...