Основные черты математического аппарата квантовой механики
Библиотека / Основные понятия и образы квантовой механики / Библиотека / Основные понятия и образы квантовой механики / Основные черты математического аппарата квантовой механики Основные черты математического аппарата квантовой механики
Страница 2

1.3.4. Сформулируем условие самосопряженности операторов. Выделим из операторных уравнений (1.1) и (1.4) собственные значения и , не нарушая равенств. Учтем, что символ оператора означает преобразование функции, записанной справа от него.* Поэтому, чтобы не нарушить смысла преобразования, влекущего за собой нарушение равенств (1.1) и (1.4), домножим слева первое из них на , а второе на. Затем следует справа домножить каждую из частей (правую и левую) обоих уравнений на произведение дифференциалов всех координат и результат проинтегрировать во всем пространстве изменения аргументов. Сравним ход этих преобразований:

, ;

, ;

, ;

, .

Вообще говоря, это дело вкуса и удобства. Важно далее всюду соблюдать оговоренные однажды правила математического синтаксиса.

Правые части этих последних равенств равны:

и

Поэтому равны и левые, т. е. получаем равенство (1.5), которое выражает условие самосопряженности операторов, имеющих действительные собственные значения.

(1.5)

1.3.5. В формуле (1.5) представлена функция и ее комплексно-сопряженный "двойник" , а в общем виде эрмитов оператор связывает две разные функции f и g аналогичной формулой:

(1.6)

Обратим внимание читателя на то, что процедура комплексного сопряжения оператора и перевод его в связана с тем, что мнимая единица в качестве численного параметра входит в конструкцию оператора.

1.3.6. Запись уравнений типа .(1,5) и (1.6) можно упростить и одновременно придать им дополнительный смысл, используя символы-скобки и , предложенные Дираком и называемые бра- и кет-символами соответственно (от англ. brасkets – скобки). Итак, вместо знаков интеграла, функций и дифференциалов переменных, образующих вместе операцию интегрирования, запишем эквивалентные символы:

и

где называется бра-вектором, а – кет-вектором. В таком случае интеграл от произведения двух функций приобретает вид скалярного произведения

Страницы: 1 2 3 4

Смотрите также

Определение жесткости и умягчение воды.
Цель работы - проведение анализа воды на жесткость и умягчение воды. ...

Органические красители
Понятие «красящее вещество» подразумевает возможность окрашивания любого субстрата. # хранения волокон, подкрашивание пищевых продуктов (пищевые пасты, сливочное масло и т.д.) все окрашенны ...

Разработка дополнительных занятий в школе к теме "Химизм различных способов приготовления пищи"
Проблема пищи всегда была одной из самых важных проблем, стоящих перед человеческим обществом. Все, кроме кислорода, человек получает для своей жизнедеятельности из пищи. Среднее потребле ...