рефракция поляризуемость преломление химический
Первая гипотеза – эмиссионная или корпускулярная, утверждала, что свет представляет собой поток мельчайших частиц – корпускул, испускаемых нагретым светящимся телом. Достигая глаза, эти частицы отражают зрительные ощущения. Ударяясь о преграду, частицы отражаются от её поверхности или проникают внутрь в зависимости от свойств материала тела.
Легко объясняя законы отражения света, эта гипотеза не могла объяснить некоторые особенности преломления света и вовсе не объясняла интерференцию света.
Вторая гипотеза – волновая, утверждала, что частицы, испускаемые светящимся телом, находятся в состоянии чрезвычайно быстрых колебаний, генерирующих волны, которые распространяются во все стороны и, достигая глаза, вызывают зрительные ощущения. Волновая теория хорошо объясняла интерференцию света и другие явления, недоступные корпускулярной гипотезе, но была не в состоянии объяснить, каким образом распространяются волны в вакууме. Впоследствии эта неясность была устранена признанием за световыми волнами электромагнитного характера. Таким образом, свет по этой гипотезе представляет собой быстро меняющееся электромагнитное поле.
В дальнейшем с накоплением экспериментальных данных и их теоретической интерпретации, удалось установить особый, двойственный, характер световых явлений и свести обе, казалось, взаимоисключающие гипотезы в одну стройную, свободную от внутренних противоречий теорию. В соответствии с этой теорией свет равноправно может рассматриваться и как волновое движение электромагнитной природы, и как поток частиц, излучаемых источником света в виде отдельных порций света – квантов или фотонов.
Вместе с тем световые явления могут рассматриваться также и с позиции геометрической или лучевой оптики, представляющей собой применение геометрических построений и теорем.
Фундаментом для сближения геометрии с учением о свете и развития лучевой оптики явились представления о прямолинейности распространения света. Лучевая оптика и в настоящее время сохраняет ведущую роль во всех оптических и светотехнических расчётах, благодаря их простоте и наглядности, и показывает обычно полное соответствие вычисленных и экспериментальных данных.
Лучевая оптика базируется на трёх основных приложениях:
- прямолинейности распространения света в однородной среде;
- поведении света на границе раздела двух сред при условии, что такая граница представляет собой идеально гладкую поверхность;
- независимости распространения света.
Указанные положения установлены эмпирически, т. е. опытным путём посредством сравнения геометрических соотношений без учёта особенностей, связанных со сложной природой света.
Чтобы оперировать только наглядными геометрическими элементами, в лучевой оптике введены два условных понятия о луче и о светящейся точке.
Под лучом понимают направление, по которому распространяется свет. Экспериментально установлено, что в вакууме и в однородной (газовой, жидкой или твёрдой) прозрачной среде (например, в воздухе при постоянном давлении, в воде или стекле) свет распространяется прямолинейно, и луч представляет собой прямую линию, началом которой является источник света.
Под светящейся точкой понимают источник света, незначительными размерами которого можно пренебречь. Физически любой источник света обладает определёнными размерами, однако, если сравнить эти размеры с теми расстояниями, на которые распространяется действие света, то условно (без существенной погрешности) источник света принимают за точку.
От светящейся точки света расходится во все стороны в виде пучка бесконечное число лучей, заполняющих всё окружающее пространство. Такой пучок называется неограниченным. Однако, если на пути такого пучка поместить диафрагму – непрозрачный экран с отверстием, то за диафрагмой свет будет распространяться уже как ограниченный пучок.
Равновесные и поляризационные диаграммы потенциал-pH
В настоящее время
большую важность имеет возможность оценивать устойчивость металлов и их сплавов
к коррозии в тех или иных условиях. Эту возможность позволяет реализовать на
практике приме ...
Методы атомно-эмиссионного спектрального анализа
Цель практического эмиссионного спектрального анализа состоит в
качественном обнаружении, в полуколичественном или точном количественном
определении элементов в анализируемом веществе. В зав ...
Классификация взрывов по плотности вещества, по типам химических реакций
Горение - с детства и
навсегда поражающий наше воображение феномен природы - несомненно один из важнейших
для природы и человеческой практики физико-химических процессов. Греческий миф о
Пр ...