Это явление связано с тем, что при увеличении главного квантового числа в пределах одной подгруппы происходит уменьшение разности энергий (n – 1)d- и ns-подуровней. Этим соединениям свойственны ковалентно-полярные связи. Они имеют кислотный характер и являются окислителями (CrO3 и K2CrO4, Mn2O7 и KMnO4).
Соединения, в которых d-электроны находятся в промежуточных степенях окисления, проявляют амфотерные свойства и окислительно-восстановительную двойственность.
5. Сходство d-элементов с элементами главных подгрупп Э(0) в полной мере проявляется у элементов третьей группы ns2np1 и (n – 1)d1ns2. С возрастанием номера группы оно уменьшается; элементы VIIIА подгруппы – газы, VIIIВ – металлы. В первой группе снова появляется отдаленное сходство (все элементы – металлы), а элементы IВ подгруппы – хорошие проводники; это сходство усиливается во второй группе, так как d-элементы Zn, Cd и Hg не участвуют в образовании химической связи.
6. d-элементы IIIВ–VIIВ подгрупп в высших степенях окисления по свойствам подобны соответствующим p-элементам. Так, в высших степенях окисления Mn (VII) и Cl (VII) являются электронными аналогами. Подобие электронных конфигураций (s2p6) приводит к подобию свойств соединений семивалентных марганца и хлора. Mn2O7 и Cl2O7 в обычных условиях малоустойчивые жидкости, являющиеся ангидридами сильных кислот с общей формулой НЭО4. В низших степенях окисления марганец и хлор имеют различное электронное строение, что обусловливает резкое отличие свойств их соединений. Например, низший оксид хлора Cl2O (s2p4) – газообразное вещество, являющееся ангидридом хлорноватистой кислоты (HClO), тогда как низший оксид марганца MnO (d5) представляет собой твердое кристаллическое вещество основного характера.
Рисунок 8.12 Сульфиды свинца (галенит или свинцовый блеск), ртути (киноварь), железа (пирит или железный колчедан), цинка (бленда) |
7. Как известно, восстановительная способность металла определяется не только его энергией ионизации (М – ne– → Мn+; +∆Hиониз), но и энтальпией гидратации образовавшегося катиона (Мn+ + mH2O → Мn+·mH2O; –∆Hгидр). Энергии ионизации d-элементов в сравнении с другими металлами велики, но они компенсируются большими энтальпиями гидратации их ионов. Вследствие этого электродные потенциалы большинства d-элементов отрицательны.
В периоде с ростом Z восстановительные свойства металлов уменьшаются, достигая минимума у элементов IВ группы. Тяжелые металлы VIIIВ и IВ групп за свою инертность названы благородными.
Окислительно-восстановительные тенденции соединений d-элементов определяются изменением устойчивости высших и низших степеней окисления в зависимости от положения их в периодической системе. Соединения с максимальной степенью окисления элемента проявляют исключительно окислительные свойства, а с низшей – восстановительные. Mn(OH)2 легко окисляется на воздухе Mn(OH)2 + 1/2O2 = MnO2 + H2O. Соединения Mn(IV) легко восстанавливаются до Mn (II): MnO2 + 4HCl = MnCl2 + Cl2 + 2H2O, но сильными окислителями окисляется до Mn (VII). Перманганат-ион MnO4– может быть только окислителем.
Поскольку для d-элементов в пределах подгруппы устойчивость высших степеней окисления сверху вниз растет, то окислительные свойства соединений высшей степени окисления резко падают. Так, соединения хрома (VI) (CrO3, K2CrO4, K2Cr2O7) и марганца(VII) (Mn2O7, KMnO4) – сильные окислители, а WO3, Re2O7 и соли соответствующих им кислот (H2WO4, HReO4) восстанавливаются с трудом.
Инертные газы: история открытия, свойства, применение
...
Формулы веществ-составление
Предлагаемое учебное пособие
содержит материал необходимый для полноценного обучения основам общей химии. В
книге приведены правила общей химии, которые подробно разобраны на конкретных
при ...