Подтверждённая экспериментально в 1927 г. двойственная природа электрона, обладающего свойствами не только частицы, но и волны, побудила учёных к созданию новой теории строения атома, учитывающей оба этих свойства. Современная теория строения атома опирается на квантовую механику.
Двойственность свойств электрона проявляется в том, что он, с одной стороны, обладает свойствами частицы (имеет определённую массу покоя), а с другой — его движение напоминает волну и может быть описано определённой амплитудой, длиной волны, частотой колебаний и др. Поэтому нельзя говорить о какой-либо определённой траектории движения электрона — можно лишь судить о той или иной степени вероятности его нахождения в данной точке пространства.
Cледовательно, под электронной орбитой следует понимать не определённую линию перемещения электрона, а некоторую часть пространства вокруг ядра, в пределах которого вероятность пребывания электрона наибольшая. Иными словами, электронная орбита не характеризует последовательность перемещения электрона от точки к точке, а определяется вероятностью нахождения электрона на определённом расстоянии от ядра. В связи с этим электрон представляют не в виде материальной точки, а как бы "размазанным" по всему объёму атома в виде так называемого электронного облака, имеющего области сгущения и разрежения электрического заряда. Представление об электроне как о некотором облаке электрического заряда удобно; оно довольно точно передаёт особенности поведения электрона. Однако следует иметь в виду, что электронное облако не имеет резко очерченных границ, и даже на большом расстоянии от ядра существует вероятность пребывания электрона. Для характеристики формы электронного облака понятие орбиталь вместо понятия орбита было введено именно для того, чтобы не смешивать движение электрона с движением тела в классической физике. Однако при упрощённом рассмотрении строения атома иногда сохраняют термин орбита, помня тем не менее об особом характере движения электрона в атоме.
По современным представлениям состояние элетрона в атоме описывается четырьмя квантовыми числами
. Главное квантовое число n характеризует величину энергии электрона и может принимать только положительные целочисленные значения: 1, 2, 3 и т. д. С увеличением главного квантового числа энергия электрона возрастает. Состояние электрона, отвечающее определённому значению главного квантового числа, называют энергетическим уровнем электрона в атоме. Помимо энергии электрона главное квантовое число определяет размеры электронного облака: чем выше значение главного квантового числа, тем больше электронное облако. Электроны, характеризующиеся одним и тем же квантовым числом, имеют электронные облака приблизительно одинаковых размеров. Поэтому говорят о существовании в атоме электронных слоёв. Электронные слои обозначают большими буквами латинского алфавита K, L, M, N, O, причём K-слой является первым от ядра атома, ему соответствует главное квантовое число n = 1, L-слой — вторым, M-слой — третьим и т. д. Электроны, образующие данный слой, могут обладать несколько отличающейся друг от друга энергией и иметь орбитали различных форм. Из квантовомеханической теории следует, что с увеличением главного квантового числа n изменяются число и характер электронных орбиталей в пределах данного электронного слоя. Количество орбиталей для каждого значения n равно квадрату главного квантового числа (n2).
Второе квантовое число l, описывающее форму электронного облака, называется орбитальным квантовым числом. При данном главном вантовом числе n орбитальное квантовое число l может принимать любые целочисленные значения от 0 до n–1. Соответствующие орбитали обозначаются строчными буквами латинского алфавита: s (l = 0), p (l = 1), d (l = 2), f (l = 3). Орбитальное квантовое число отображает энергию электрона на подуровне. Электроны с различными орбитальными квантовыми числами несколько отличаются друг от друга: их энергия тем выше, чем больше число l. Число возможных подуровней в каждом энергетическом уровне совпадает с порядковым номером электронного слоя, но фактически ни один энергетический уровень не содержит больше четырёх подуровней. Это справедливо для стационарного состояния атомов всех элементов. Так, первому энергетическому уровню соответствует s-подуровень; второму уровню — два подуровня: s и p; третьему уровню — три подуровня: s, p и d; четвёртому и следующим уровням —четыре подуровня: s, p, d и f.
Разработка школьного элективного курса "Полимеры вокруг нас"
...
Определение степени полимеризации целлюлозы
Молекулярная масса целлюлозы является одной из
важнейших ее характеристик и в значительной степени определяет как области
практического использования различных препаратов целлюлозы, так и
ф ...