Применение фуллеренов

Фуллерены обладают рядом важных характеристик: химической стойкостью, высокой прочностью, жесткостью, ударной вязкостью, теплопроводностью и электропроводностью. В зависимости от тонких особенностей молекулярной симметрии фуллерены могут быть диэлектриками, полупроводниками, обладать металлической проводимостью и высокотемпературной сверхпроводимостью. Эти свойства в сочетании с наномасштабной геометрией делают их почти идеальными ‑ возможно даже уникальными ‑ материалами для изготовления электрических проводов, сверхпроводящих соединений или целых устройств, которые с полным основанием можно назвать изделиями молекулярной электроники. Химической сборке элементов различных схем благоприятствуют свойства фуллерена, который может образовывать ионы от +6 до ‑6 и в различных матрицах ‑ связи с донорами, акцепторами, свободными радикалами и ионами. Фуллерены могут также использоваться при создании средств молекулярной оптоэлектроники для фемтосекундной оптоволоконной передачи информации. Полимеризация фуллеренов при электроннолучевом или ионизирующем воздействии дает возможность получать резистры нового поколения[8].

В США в 2000 г. были получены нанотранзисторы на основе фуллереновых кластеров C60. Нанотранзистор изготавливался следующим образом. Сначала с помощью электронно-лучевой литографической машины на кремниевой пластине создавалась решетка из узких золотых проводников шириной 200 нм и толщиной 10 нм. Пропуская по решетке электрический ток большой плотности, можно было вызывать электромиграцию атомов золота. В результате провода истончались до нанометровых размеров и разрывались в строго определенных местах, образуя зазоры шириной около 1 нм. Затем пластина покрывалась тонким слоем водного раствора фуллереновых кластеров. Далее растворитель испарялся, а кластеры C60 оказывались в зазоре между двумя электродами — истоком и стоком. Электрод затвора отделялся от остальных электродов изолирующим слоем двуокиси кремния[16].

Другим применением фуллеренов в энергетической области является то, что они способны обратимо формировать соединения типа С60Н36. Еще в 1994 году компания “Мицубиси” распространила сообщение о первом применении фуллеренов в электронике. Согласно этому сообщению, фуллерены используются в качестве основы для производства аккумуляторных батарей. Эти батареи, принцип которых основан на упоминавшейся выше реакции присоединения водорода, во многих отношениях аналогичны широко распространенным металлогидридным никелевым аккумуляторам. Однако в отличие от последних они обладают способностью запасать в пять раз больше энергии. Такие батареи характеризуются более высокой эффективностью, малым весом, экологической и санитарной безопасностью по сравнению с наиболее распространенными в этом плане аккумуляторов на основе лития[22].

Другими уникальными соединениями фуллеренов являются эндоэдральные комплексы. В частности, ожидается, что на основе эндоэдральных комплексов в будущем будут созданы высокоэффективные лекарства против рака. Так, нетрудно представить себе, что внутрь фуллереновой сферы можно поместить атом высокоактивного нуклида, а на сферу поместить органические хвосты, делающие подобное соединение специфичным тем или иным структурам или органам (например - раковой опухоли) организма. Таким образом, можно будет добиться того, что, будет проводиться селективная радиотерапия без повреждения соседствующих органов и тканей[21].

Механические свойства фуллеренов позволяют использовать их в качестве высокоэффективной твердой смазки[11].

Ученые предлагают новые металлоорганические молекулы на базе С60. Авторы показывают, что комплекс циклопентадиенового кольца Ср[ScH2] способен хранить 6.7% недиссоциированного H2, однако, после удаления водорода эти комплексы могут полимеризоваться, что делает процесс необратимым. Оказывается, этого можно избежать, если симметрично распределить такие комплексы на фуллеренах, например, как С60[ScH2]12 и С48В12[ScH]12. Образуются стабильные системы, способные обратимо адсорбировать дополнительный водород, при этом достигается емкость 7.0 и 8.77 массового %, соответственно. Более того, обратимо извлекаемый водород “хранится” с энергией связи ~ 0.3-0.4эВ, что идеально для транспортных целей. Очень важно отметить, что такие системы не являются всего лишь красивыми теоретическими моделями. Стабильные фуллерены, покрытые переходными металлами, уже были синтезированы[21]. В 2001-2002 годах в Японии построен завод по производству фуллеренов в объеме десятков тонн, выпускаются первые партии изделий, в которых фуллерены используются как компонент новых композитных материалов. [8]Исследование водорастворимых соединений фуллеренов открыло новое перспективное направление, связанное с возможностью использования их в биологии и медицине, т.к. фуллерены, обладая определенным числом ненасыщенных связей, являются уникальными объектами акцепции электронов, а также идеальными реагентами для радикальных реакций. Это позволяет использовать их в качестве потенциальных "ловушек" (антиоксидантов) при гиперпродуцировании активных форм кислорода, являющегося ведущим механизмом при старении организмов или его патологическом состоянии. В процессе работы исследовалось влияние различных водорастворимых комплексов, содержащих как высшие, так и низшие фуллерены, на кислородный метаболизм в системе крови пациентов с разной патологией. Результаты исследований показали, что высшие фуллерены обладают большей активностью и являются более перспективными в качестве веществ, оказывающих влияние на окислительно-восстановительные процессы в органических соединениях. Это очень важно, так как это может быть использовано для создания препаратов, обладающих биологической активностью противораковой и противовирусной направленности.[11]