dc/dt = k с, (3.7)
k = (2,3.lgcA/c0,А)/t. (3.8)
Реакции второго порядка. В этих реакциях Sn= 2. Следует различать два случая: n
= 2 и n
= 1, n
= 1. В первом случае начальные концентрации реагирующих веществ одинаковы, поэтому− dc/dt = k.с2, (3.9)
k = t-1.( cA-1 - c0,А-1). (3.10)
Во втором случае начальные концентрации реагирующих веществ не одинаковы
k=2,3.t-1(c0,-1- c0,
-1).lg[(c
.c0,
)/(c
. c0,
)]. (3.11)
Реакции n-го порядка. В этих реакциях Sn= n. Поэтому общее кинетическое уравнение имеет вид
k = (n-1)-1.t-1. (cA1-n − c0,А1-n). (3.12)
Под периодом полупревращения вещества t1/2 понимают промежуток времени, с, в течение которого прореагировала ровно половина первоначально взятого вещества. Период полураспада для разных реакций может принимать очень широкое значение: от долей секунды (радиоактивный распад большинства трансурановых элементов, взрывные реакции и др.) до миллионов лет (радиоактивный распад урана, окисление горных пород и др.). С учетом приведенного определения (c= 1/2 c0,
), для реакций нулевого порядка
t1/2 = , (3 13)
для реакций первого порядка
t1/2 = 0,693/k, (3.14)
для реакций второго порядка
t1/2 =. (3.15)
Определение порядка реакции методом Оствальда-Нойеса (интегральный метод):
ni = [(lg(t'1/2/t"1/2)/lg(c0,2/c0,1)] + 1, (3.16)
где t'1/2 – период полураспада, соответствующий начальной концентрации реагирующего вещества c0,1; t"1/2 – период полураспада этого же вещества при другой начальной концентрации c0,2.
Определение порядка реакции методом Вант-Гоффа (дифференциальный метод):
ni = (lgw1 - lgw2)/(lgc0,1/c0,2), (3.17)
где w1, w2 – средние скорости реакции, соответствующие начальным концентрациям с0,1 и с0,2.
Гидролиз солей. Особенности почвенного гидролиза
...
Экспериментальная часть
Измерения
проводили по трехэлектродной схеме: рабочий электрод – стеклоуглеродный
стержень (Æ 0,7 мм), вспомогательный электрод – стеклоуглеродный тигель (V = 25 см3) и электрод сравнения – хл ...