Обычно данные биологических испытаний бывают определены со значительно меньшей точностью, чем физико-химические характеристики. Поэтому биологические данные выбирают в качестве зависимых, а физико-химические параметры - в качестве независимых переменных регрессии. Далее выполняется процедура метода наименьших квадратов, и рассчитываются статистические параметры, на основании которых можно судить об адекватности предложенной модели. Обычно регрессионный анализ осуществляется путем последовательного добавления независимых переменных и одновременной проверки характера изменения статистических критериев (метод прямого отбора). Цель такой процедуры — отыскание минимального числа переменных, достаточного для построения статистически значимой корреляционной зависимости. Автоматизированный вариант такой программы приведен в работе [15]. Метод работает таким образом, что на каждом шаге добавляется та переменная, которая обеспечивает максимальное улучшение качества модели. И так до тех пор, пока добавление новой переменной не перестанет давать существенного улучшения точности описания экспериментальной зависимости. Аналогичным образом на каждом шаге проводится проверка каждой переменной по отдельности и исключение ранее включенных в регрессию переменных. Вся процедура отбора переменных основывается на предположении, что переменные, идентифицированные по отдельности как наилучшие, и в совокупности будут образовывать наилучший набор переменных. Такое предположение не всегда оправдывается, особенно в тех случаях, когда между переменными, имеется сильная связь.
Активность. Порядок реакций
...
Компьютерные технологии при изучении темы "Молекулярные перегруппировки"
В Государственной
программе развития образования России на 2005-2010 годы отмечается, что в
условиях быстроизменяющегося мира и увеличения потоков информации
фундаментальные предметные знан ...
О-хлорстирол
...