Трансформация или разрушение комплексного соединения происходит в тех случаях, когда компоненты его внутренней сферы, вступая во взаимодействие с добавленным реагентом, связываются или трансформируются вследствие образования: а) более устойчивого комплекса; б) малодиссоциирующего соединения; в) малорастворимого соединения; г) окислительно-восстановительных превращений. Проиллюстрируем эти положения на примерах.
А. Трансформация комплекса с образованием более устойчивого комплекса в результате:
- более прочного связывания лигандов с новым комплексообразователем, т. е. реакции обмена комплексообразователя:
[Сu(NН3)4]S04 + 2Н2SО4 à СиSО4 + 2[NН4]2SО4
([Сu(NН3)4]2+ 4Н+ à Сu2+ + [NН4]+)
- более прочного связывания комплексообразователя с новым лигандом, т. е. реакции обмена лигандами во внутренней сфере:
[Pt(NH3)4Cl2] + 4КСN à К2[Рt(СN)4] + 4NН3 + 2КСl
([Pt(NH3)4Cl2]+ 4СN- à [Рt(СN)4]2-+ 4NH3)
Замена лигандов во внутренней сфере комплексного соединения протекает ступенчато, причем при наличии различных лигандов вначале замещается тот лиганд, связь которого с комплексообразователем лабильна:
[Рt(NН3)2С12] + КI à [Рt(NН3)2ClI] + КС1
([Рt(NН3)2С12] + I- à [Рt(NН3)2СlI] + Сl-)
Рассмотренные реакции трансформации комплексных соединений всегда протекают в сторону образования более устойчивых комплексных соединений, у которых константа нестойкости внутренней сферы меньше, чем у исходных соединений.
Б. Разрушение гидроксокомплексов в кислой среде из-за образования малодиссоциированного соединения
Nа2[Zn(ОН)4] + 4НС1 à 2NaCl + ZnCl2 + 4Н2O
([Zn(ОН)4]- + 4Н+ à Zn2+ + 4Н20)
В. Разрушение комплексного соединения с образованием малорастворимого соединения, в котором комплексообразователь или лиганд связан прочнее, чем в комплексе:
[Ag(NH3)2]Cl + KI àAgI + 2КСl + 2NН3
([Ag(NH3)2]+ + I- à AgI + 2NH3)
Г. Разрушение или трансформация комплексного соединения в результате окислительно-восстановительных превращений:
- лиганда:
K2[CdI4] + Cl2 à 2КСl + СdС12 + 2I2
([CdI4]2- + Cl2 à Сd2+ + 2I2 + 4Сl-)
- комплексообразователя:
2К4[Fе(СN)6] + С12 à 2К3[Fе(СN)6] + 2КС1
(2[Fе (СN)6]4- + С12 à 2[Fе(СN)6] + 2Сl- )
Процесс комплексообразования сильно влияет на величины восстановительных потенциалов катионов d-металлов. Если восстановленная форма катиона металла образует с данным лигандом более устойчивый комплекс, чем его окисленная форма, то потенциал возрастает. Снижение потенциала происходит, когда более устойчивый комплекс образует окисленная форма. Иллюстрацией сказанному являются следующие данные.
Fe3+ + e- ßà Fe2+
φ0’ = 0,35 B
Эти особенности окислительно-восстановительных свойств ионов "металлов жизни" в биокомплексах очень важны для понимания биохимических процессов, протекающих при их участии.
Определение степени полимеризации целлюлозы
Молекулярная масса целлюлозы является одной из
важнейших ее характеристик и в значительной степени определяет как области
практического использования различных препаратов целлюлозы, так и
ф ...
Д. И. Менделеев
Свою мини творческую работу я хотел
бы начать с причин, которые подтолкнули меня к её написанию.
Во-первых, до написания этой работы я
знал о Дмитрии Ивановиче только то, что он был Велик ...