Твёрдые растворы - однородные (гомогенные) кристаллические фазы переменного состава; образуются в двойных или многокомпонентных системах. Если компоненты системы неограниченно растворимы друг в друге, они образуют непрерывный ряд твёрдых растворов. Чаще, однако, концентрация растворенного вещества не может превышать некоторое предельное значение и существование твёрдого раствора ограничено некоторыми областями составов (области гомогенности). Твёрдыми растворами являются многие металлические сплавы и неметаллические системы - минералы, стекла, полупроводники, ферриты [3].
Регулярный раствор образуется из компонентов с выделением или поглощением тепла, а энтропия смешения его такая же, как и в совершенном растворе. Проблема аналитического представления концентрационной и температурной зависимости термодинамических свойств сводится к поиску соответствующего выражения для избыточной энергии Гиббса GE.Обычно в качестве нулевого приближения к теории реальных растворов применяется модель идеального раствора, где GE=0. В настоящей модели за нулевое приближение принята теория регулярных растворов.
Понятие «регулярный раствор» включает в себя как частные случаи понятия «идеальный» и «предельно разбавленный» раствор, а закон граничной регулярности, согласно которому любой раствор можно считать регулярным до определенного предела, справедлив для более широкого диапазона концентраций, чем законы Рауля и Генри.
Для регулярного раствора:
, (1.1)
где xi и xj – мольные доли компонентов,
Qij - энергия взаимообмена (смешения).
В рамках модели строго регулярного раствора энергии взаимообмена являются константами. В реальных системах энергии взаимообмена (как эмпирические параметры модели) зависят от состава и температуры.
Для субрегулярных растворов:
; (1.2)
Для квазирегулярных растворов:
; (1.3)
где: и
- соответственно теплота и избыточная энтропия смешения компонентов. Выражения (1.2) и (1.3), очевидно, можно рассматривать как частные случаи неизвестной функции для концентрационной и температурной зависимостей энергии смешения компонентов, получаемой путем разложения
и
в ряд Тейлора. Если ограничиться несколькими первыми членами ряда:
; (1.4)
то получится представление функции полиномом. В свою очередь, каждый из параметров
,
,
,…,
может зависеть от температуры:
; (1.5)
Многочлены (1.4) и (1.5) - приближенное выражение неизвестной функции . Качество приближения определяется величиной остатка рядов – той ее части, которая отбрасывается. Чтобы наше приближение удовлетворительно описывало термодинамические свойства раствора, нужно, чтобы остаток был невелик по сравнению с ошибкой экспериментов. Тогда дальнейшее уточнение функции теряет смысл.
Как показывает математическая обработка экспериментальных данных, для бинарных растворов достаточно трех параметров ,
,
, чтобы в большинстве случаев корректно аппроксимировать термодинамические функции смешения системы.
Поэтому концентрационную (конфигурационную) энергию взаимообмена компонентов в дальнейшем будем представлять тремя членами ряда (1.4), а избыточную энергию Гиббса любой фазы с областью гомогенности будем описывать уравнением:
; (1.6)
Реакторы идеального вытеснения
Вариант № 14
реактор газовый
поток вытеснение
В Р.И.В. Проводят
окисление SO2. Объем реакционной зоны 150 м2. Объемный расход смеси 50000 м3/г. Состав исходной смеси SO2 – 0,1; O2 – 0, ...
Обзор источников образования тяжелых металлов
Тяжелые
металлы применяются во многих отраслях промышленности, таких как металлургия,
химическая технология, электрохимия, резиновая, текстильная, фарфоровая и
другие. В производственных пр ...
Обсуждение результатов
Для химического
исследования снежного покрова, нами был проведен отбор проб на следующих
объектах: поселок Шлаковый, поселок Мирный, м-н. Кольное, пл. Ленина, пл.
Театральная, ЦПКиО, м-н. Канищево, ...