О природе электропроводности конденсированных взрывчатых веществ. Гипотезы проводимости продуктов детонации
Дипломы, курсовые и прочее / Исследование распределения электропроводности в пересжатых детонационных волнах в конденсированных взрывчатых веществах / Дипломы, курсовые и прочее / Исследование распределения электропроводности в пересжатых детонационных волнах в конденсированных взрывчатых веществах / О природе электропроводности конденсированных взрывчатых веществ. Гипотезы проводимости продуктов детонации О природе электропроводности конденсированных взрывчатых веществ. Гипотезы проводимости продуктов детонации
Страница 2

Сигналы порядка 1 В, возникающие на разнородных металлах, погруженных в продукты детонации, не могут свидетельствовать в пользу ионной гипотезы, поскольку являются проявлением поверхностного эффекта, в противоположность электропроводности, связанной с объёмными свойствами вещества. Электрические сигналы на разнородных металлических электродах 1-3 В возникают при погружении их в ударносжатые газы [28], в которых механизм проводимости заведомо электронный. Таким образом, и этот аргумент не имеет отношения к гипотезе ионного механизма проводимости.

Ударно сжатая вода [29] до давлений в 200 кбар имеет электропроводность равную по величине 10 Ом-1см-1. Вода присутствует во всех продуктах детонации взрывчатых веществ состава CNHO, её доля составляет 10-40%. Диссоциация воды при высоких давлениях на ионы H3O+ и OH– по мнению авторов [25] может объяснить электропроводность в 1-4 Ом-1см-1, если считать её ионной. При этом авторы [25] полагают подвижность ионов в ударно сжатой воде и в ПД одинаковой.

Сравнение электропроводности ударно сжатой воды с электропроводностью продуктов детонации не правомерно. Во-первых, механизм проводимости ударно сжатой воды дискуссионный. В частности он может быть перескоковым из-за близости ионов друг к другу, а значит электронным. В продуктах детонации ионы разрознены и такой механизм маловероятен. Во-вторых, ионы в ударно сжатой воде окружены ионами, в отличие от продуктов детонации, где они окружены в основном нейтральными молекулами. В результате подвижности ионов должны резко отличаться.

Гипотеза ионной проводимости испытывает трудности при объяснении устойчивости отрицательных ионов в детонационных условиях, не объясняет возникновения проводимости при детонации взрывчатых веществ, не содержащих водорода, противоречит уменьшению электропроводности с ростом воды при детонации смесей тротила с гексогеном [30], не может объяснить даже качественно увеличение электропроводности в равновесных продуктах детонации при добавлении малых долей легко ионизуемых инертных добавок. Ионная проводимость продуктов детонации неприемлема для объяснения явления, при этом гипотеза электронной проводимости может иметь место при объяснении электропроводности продуктов детонации.

Наиболее детально электронный механизм проводимости равновесных продуктов детонации рассмотрен в [31]. Считалось, что электроны проводимости возникают в результате термической ионизации, поддержанной высокими плотностями при детонационных давлениях (металлизация). Рассеяние электронов в основном происходит на нейтральных молекулах с сечением рассеяния, равном газокинетическому (10-15 см2). Такое рассмотрение рассеяния неправомерно, оно приводит к длине свободного пробега порядка 3·10-8 см, равной размеру молекулы или межмолекулярному расстоянию. В таких условиях теряет смысл длина свободного пробега. Кроме того, необходимые для обеспечения наблюдаемой в продуктах детонации электропроводности концентрации электронов не могут быть обеспечены термической ионизацией. И только в продуктах детонации тротила, в предположении о термоэмиссии электронов с графитовых частиц конденсированного углерода обеспечивалась необходимая концентрация электронов. Электрон в продуктах детонации – существенно квантовый объект, его взаимодействие с молекулами, а, следовательно, и рассеяние необходимо рассматривать с квантово-механических позиций.

В пользу электронного механизма проводимости говорят следующие факты: отражение электромагнитных волн от фронта детонации [32], непрозрачность для видимого света продуктов детонации исследованных взрывчатых веществ, практически независимость электропроводности от величины напряженности электрического поля [33], сравнительно низкая (105-106 В/см) электрическая прочность продуктов детонации [34,35], эмиссия электронов из фронта детонации [36]. Кроме того, гипотеза электронного механизма проводимости позволяет непротиворечиво объяснить поведение электропроводности и её величину в равновесных продуктах детонации.

Страницы: 1 2 

Смотрите также

Круговорот золота в природе
...

Исследование фазовых эффектов в бинарных азеотропных смесях
...

Синтез бис-(триметилсилил) диметиламинометил фосфоната
α-Аминофосфоновые кислоты – структурные аналоги карбоновых α-аминокислот. Различие состоит в том, что карбоксильная группа заменена на остаток фосфористой кислоты (PO3H2). Аминофос ...