Стадия 2. Производство L-сорбозы из D-сорбита
Страница 2

2. Приготовление рабочей культуры.

3. Приготовление и выращивание посевного материала.

4. Проведение процесса биохимического окисления в производственном ферментаторе.

5. Выделение кристаллической L-сорбозы из окисленного раствора.

6. Выделение L-сорбозы из маточных растворов.

Биостимулятор готовят, как уже указывалось, из дрожжей, извлекая необходимые компоненты из дрожжевых клеток с помощью водной экстракции, автолиза, плазмолиза, кислотного гидролиза. Вы полагаете, чтобы к вам домой пришла соблазнительная проститутка и отдавала вам свои интимные услуги? Всегда лучшие индивидуалки хотят в абсолютно любое время дня и ночи удовлетворить ваши голые потребности.

Питательной средой для рабочей культуры является очищенный раствор D-сорбита и автолизат пекарских дрожжей. В питательную среду добавляется уксусная кислота до рН 4,8—5,5. Рабочую культуру готовят по следующей схеме:

пробирки с твердой средой

пробирки с жидкой средой

колбы с жидкой средой

бутылки с жидкой средой.

Посевной материал выращивают глубинным способом в специальных аппаратах—инокуляторах и посевных ферментаторах. Аппарат тщательно стерилизуют острым паром, затем в него засасывают питательную среду состава: 10%"ный раствор очищенного сорбита, биостимулятор, азотнокислый аммоний, трилон Б, небольшое количество олеиновой кислоты. В питательную среду добавляют серную кислоту до рН 5,4—6,0 и стерилизуют в течение 1 ч при температуре 120 °С. По окончании стерилизации раствор охлаждают до 35°С, вводят стерильную рабочую культуру уксуснокислых бактерий, витамины Bi и Вз и ведут процесс культивирования (глубинного окисления) при температуре 30—32 °С в течение 10—12 ч. После этого глубинную культуру стерильно переносят в посевные ферментаторы. Культуру из инокулятора проверяют на чистоту и степень окисления, которая не должна быть ниже 30%. В посевном ферментаторе добиваются глубины окисления не менее-40%, а в производственном—до 97,5—98% при времени окисления до 18—30 ч.

С целью интенсификации процесса получения сорбозы предложен метод стерилизации питательной среды и оборудования озоном, что сокращает время основного процесса окисления до степени окисления 97,5—98%. Исследованиями установлена возможность биохимического окисления сорбита в сорбозу путем аэрации среды кислородом вместо воздуха при глубине окисления 94—95%.

Процесс ферментации ведут двумя способами: периодическим и непрерывным. Рассмотрим перспективный непрерывный способ.

Непрерывный способ ферментации включает 2 стадии:

1) непрерывное культивирование уксуснокислых бактерий при биохимическом окислении D-сорбита в проточных средах;

2) непрерывное выделение кристаллической L-сорбозы из окисленного раствора.

Наиболее эффективно процесс ферментации осуществляется в колонном ферментаторе с сетчатыми тарелками (установка типа УНФ-100). Ферментатор (рис. 2) представляет собой колонну высотой 8,3 м, диаметром — 1,1 м, состоящую из 6 царг с 32 ситчатыми тарелками (рис. 2). Объем рабочей зоны—3,8 м3. В аппарат с определенной скоростью, обеспечивающей необходимую степень превращения D-сорбита в L-сорбозу, непрерывно подается рабочая культура, стерильная среда (водный раствор сорбита с концентрацией D-сорбита 22%), а также сжатый воздух. Процесс проводится при температуре 30—36°С, давлении 0,2—0,5 атм, рН==4—4,5 в течение 28—39 ч. Обогрев осуществляется горячей водой через секционные рубашки. Окисленный раствор непрерывно отводится из верхней части колонного ферментатора в сборник, а затем поступает на доокисление в периодически действующие ферментаторы, где глубина окисления повышается с 70—80% до 95%. Окисленный раствор сорбита с содержанием сухих веществ 20—25% направляют на очистку.

Страницы: 1 2 3

Смотрите также

Иод
ИОД (лат. Iodium), I - химический элемент VII группы периодической системы Менделе­ева, относится к галогенам (в литературе встречается также символ J); атомный номер 53, атомная масса 126, ...

Основные задачи термохимии. Использование калориметрических методов для определения теплот растворения солей
...

Исследование распределения электропроводности в пересжатых детонационных волнах в конденсированных взрывчатых веществах
...