Важность открытия характеристического излучения стала ясной через десять лет, после того как отец и сын Брэгги показали возможность исследования рентгеновских спектров с помощью кристаллов с известным строением. Используя методику экспериментов, предложенную Брэггами, в 1911 г. Баркла показал, что характеристическое излучение тяжелых элементов бывает двух типов: коротковолновое, которое он назвал K-излучением, и длинноволновое, названное им L-излучением. Эти эксперименты фактически стали началом рентгеновской спектроскопии. П Ценный вклад в эту область внесли французский физик Морис де Бройль (старший брат Луи де Бройля) и английский физик Генри Мозли, который первым начал исследовать спектры рентгеновского излучения химических элементов, заложив основу рентгеноспектрального анализа. На практике эти открытия в то время использовали только для получения рентгеновских лучей с определенными свойствами, что было необходимо для рентгеноструктурного анализа.
Но само происхождение рентгеновских спектров элементов в то время не удавалось объяснить теоретически. Такое положение сохранялось до идеи Нильса Бора о квантовой модели атома, которая объяснила происхождение характеристического рентгеновского излучения квантовыми переходами электронов с внешних оболочек атома на внутренние с выделением рентгеновских квантов. Далее последовало открытие Мозли - закон Мозли, связавший частоту спектральных линий с порядковым номером излучающего элемента в периодической таблице Менделеева. Мозли показал, что характеристическое рентгеновское излучение создается внутренними электронами (находящимися вблизи ядра) атома и что оно дает информацию о внутренних электронах атома, как обычный свет о внешних электронах. Пр Генри Мозли было всего лишь 26 лет, когда он в 1913 г. опубликовал результаты своих экспериментов, подтвердив ими предположение голландского исследователя Антониуса ван дер Брука о равенстве заряда ядра атома порядковому номеру соответствующего элемента в периодической системе. Этот труд навеки вписал имя Генри Мозли в историю науки.
Мозли считал, что его метод исследования имеет большое будущее, поскольку "он способен привести к открытию еще неизвестных элементов, так как положение соответствующих им характеристических линий рентгеновского излучения можно предсказать заранее". Мозли для практического подтверждения своих идей проводил поиск предсказанных, но не открытых элементов. Он пытался обнаружить с помощью рентгеновских спектров природных объектов элемент номер 72, чья клетка пустовала тогда в таблице элементов слева от тантала (уже открытого к тому времени). Но только спустя 8 лет спектроскопист А.Довийе в 1922 г., используя более совершенную аппаратуру для рентгеноспектрального анализа, обнаружил новый элемент 72 (гафний) в тех же образцах, которые ранее исследовал Мозли. Другим элементом, обнаруженным в природе с помощью рентгеноспектрального анализа, стал рений (открыт супругами Ноддак в 1925 г.). Гафний и Рений оказались последними по времени открытия стабильными химическими элементами на Земле. Характеристический рентгеновский спектр стал "визитной карточкой" элемента.
Работа по развитию техники рентгеноспектрального анализа была продолжена шведским физиком-экспериментатором Карлом Манне Георгом Сигбаном. Он разработал новые методы получения детальных рентгеновских спектров и исследовал рентгеновские спектры почти всех химических элементов. Это позволило получить исчерпывающие данные о структуре электронных оболочек атомов. Сигбан изготовил дифракционную решетку для исследования длинноволнового рентгеновского излечения. Тем самым он ликвидировал пробел между жестким (коротковолновым) рентгеновским излучением, которое исследуется с помощью кристаллических решеток, и оптическим ультрафиолетовым излучением, исследуемым с помощью обычной оптической дифракционной решетки. Исследования шведского ученого показали как дополняются электронные оболочки атома при переходе от более легких элементов к тяжелым. Его наблюдения позволили определить, сколько электронов находится в соответствующей оболочке того или иного элемента.
Процессы и аппараты химической технологии
В данной работе стоит задача спроектировать
установку для выпаривания раствора хлорида аммония.
Выпаривание – это
процесс концентрирования растворов твердых нелетучих веществ путем части ...
Простые эфиры целлюлозы
Простые эфиры целлюлозы
С6Н7О2(ОR)n(ОН)3-n
(где n≈2) представляют собой в основном продукты О-алкилирования
целлюлозы. Простые эфиры целлюлозы в настоящее время приобрели большое
пра ...