Существуют определенные проблемы в применении керамики на основе фосфатов кальция для заполнения дефектов костных тканей. Керамическим блокам непросто придать требуемую форму для заполнения дефекта, обеспечив при этом плотное прилегание керамического имплантата к костной ткани, необходимое для остеоинтеграции. Решение проблемы найдено применением цементов, которые должны обладать формуемостью, способностью к полному заполнению дефекта in situ, заданной скоростью схватывания и твердения, требуемыми механическими свойствами. С применением таких цементов могут быть реализованы многие задачи, возникающие в стоматологии и костной хирургии.
Первые фосфатно-кальциевые цементы были разработаны Брауном с соавторами [272]. Затем были предложены разнообразные составы цементов [273-278], основными продуктами взаимодействия исходных реагентов в них являются всего лишь три соединения: осажденный апатит (ОГА), дикальцийфосфат дигидрат (ДКФД) и аморфный фосфат кальция (АКФ). АКФ быстро превращается в ОГА при физиологических условиях [279]. В основном, усилия исследователей направлены на создание цементов первой группы, хотя и цементы на основе ДКФД имеют свои интересные особенности. Химический и фазовый составы цемента формируются при взаимодействии с окружающей средой, поэтому конечный продукт может содержать, например карбонат-группы, входящие цемент в результате взаимодействия с углекислым газом атмосферы.
Фосфатные вяжущие системы широко применяются в технике [280]. Костные и стоматологические цементы основаны на тех же принципах, что и, например огнеупорные [281]. Вяжущая система, в общем случае, представляет собой гетерогенную композицию, содержит одну или более твердую дисперсную активную фазу (наполнитель) и затворяющую жидкость (связующее). Твердение таких композиций происходит в результате образования новых химических соединений, полимеризации, поликонденсации и адгезии [282]. Степень протекания тех или иных из указанных процессов определяется основностью/кислотностью наполнителя и его химической активностью по отношению к связующему, дисперсностью наполнителя, составом и концентрацией связующего, условиями проведения процесса твердения.
Рассматривают два типа взаимодействий, приводящих к формированию структуры и свойств фосфатно-кальциевых цементов [283-284]. Первое - это взаимодействие относительно кислого компонента с относительно основным с получением продукта с рН, близким к нейтральному. Типичным примером является цемент, разработанный Брауном с соавторами [272], в состав которого входят ТеКФ (основный компонент, Са/Р = 2,0)) и ДКФ (слабо кислый, Са/Р = 1,0):
Са4(РО4)2О + СаНРО4 → Са5(РО4)3ОН (70)
Н2О
Другой вариант - это взаимодействие -ТКФ (Са/Р = 1,5) с МКФМ (Са/Р = 0,5) с получением ДКФД:
Са3(РО4)2 + Са(Н2РО4)2·Н2О +7Н2О → 4СаНРО4·2Н2О (71)
С целью улучшения биологического поведения, в состав цемента, получаемого по реакции (71), могут быть введены карбонат-группы, например посредством добавления к реакционной смеси карбоната кальция [285, 286].
Важнейшее значение для кинетики схватывания и твердения, формирования микроструктуры и механических свойств конечного продукта имеет состав затворяющей жидкости (связующего). В принципе, возможно введение одного из компонентов вяжущей системы в качестве дисперсного наполнителя, а второго - через раствор, в качестве затворяющей жидкости. Известно использование растворов фосфатов, в частности карбоната натрия, в качестве затворяющей жидкости [287].
Второй тип реакций схватывания основан на процессах, в которых соотношение Са/Р не изменяется. Типичными примерами является взаимодействие -ТКФ с водой с образованием ОГА:
3Са3(РО4)2 + Н2О → Са9(НРО4)(РО4)5(ОН) (72)
В отличие от, например акрилатных стоматологических цементов, либо алюмофосфатных цементов, применяемых в технике высоких температур, схватывание и твердение фосфатно-кальциевых костных и стоматологических цементов происходит не в результате процессов полимеризации, и с незначительными тепловыми эффектами. Объем цементной смеси мало изменяется в процессе схватывания. Схватывание и твердение цементов сопровождается постепенно уменьшающимся содержанием жидкой фазы вследствие образования кристаллогидрата при кристаллизации ДКФД или вовлечения гидроксильных групп в структуру гидроксиапатита. Первоначально жидкая фаза смачивает частицы твердых фаз, способствуя формированию механического контакта и адгезии частиц, с последующей кристаллизацией в пределах жидкой фазы коллоидных частиц. Наличие прослоек жидкой фазы на этой стадии придает цементной пасте пластичность при формовании. Со временем происходит дальнейшая кристаллизация новой фазы и цемент твердеет. Повышению механической прочности способствует выделение частиц неравноосной морфологии (пластинчатых, игольчатых), обеспечивающих механическое зацепление [288,289].
Нестероидные противовоспалительные препараты. Салицилаты
...
Определение глюкозы в вине
Тема нашей
курсовой работы – определение глюкозы в вине. Определение основано на окислении
альдоз щелочным раствором йода, который в условиях определения не окисляет
кетозы.
Мы ставили ...
Самоорганизация ион-проводящих структур при протекании электрохимических процессов на фазовых переходах, включающих серосодержащие компоненты
Актуальность темы
диссертации.
Тема диссертационной
работы относится к электрохимии твердого состояния, входящей как составная
часть в ионику твердого тела (ИТТ) -раздел науки, возникший ...