Структура и свойства

Блоки Аи В, из которых построены макромолекулы термоэластопластов, характеризуются достаточно высокоми степенями полимеризации, причем молекулярная масса полиденовых блоков значительно больше, чем поливинилароматических. Так, в линейных термоэластопластахс оптимальными физико-механическими свойствами поливинилароматические блоки атактического строения имеют молекулярную массу в пределах от 6 до 50 тысяч ( соответствующая температура стеклования полистирола 80-100°С), полидиеновые блоки 40-120 тыс. (температуры стеклования полибутадиена от 90-до 100°С при содержании 40-45% цис-1,4-звеньев и 8-12% 1,2-звеньев, полиизопрена - от 60 до 70°С при содержании 70-80% цис-1,4-звеньев и 15-25 транс-1,4-звеньев).

У поликонденсационных термоэластопластов обладающих, как правило, линейной структурой, молекулярные массы гибкоцепных блоков могут изменяться от 3-7 тыс.( полиуретановые термоэластопласты) до нескольких десятков тысяч(арилат-силоксановые, ариленсульфоноксид-силоксановые термоэластопласты).

Гомополимеры, образующие термоэластопласты, термодинамически несовместимы. Поэтому термоэластопласты являются своего рода двухфазными системами; это подтверждается наличием двух четких максимумов на температурной завасимостидинамическо0механических потерь. Так, в диен-винилароматических термоэластопластов при содержании диена более 50% поливинилароматические блоки образуют стеклообразные домены, регулярно расположенные в непрерывной фазе( матрице) полидиена.домены играют роль соединительных узлов ( аналогично поперечным химическим связям, например серным мостикам в вулканизационной сетке), в связи с чем термоэластопласты при температурах ниже температуры стеклования жесткоцепного блока, например полистирольного, способны к высокоэластичным деформациям. Повышение температуры выше температуры стеклования полистирола сопровождается появлением у полистирольных блоков сегментальной подвижности, размягчением доменов и ослаблением их функции соединительных «узлов».в результате термоэластопласты становятся становятся типичными термопластами.

По сравнению с непрозрачными смесями двух гомополимеров соответствующие термоэластопластам аналогичного состава прозрачны из-за малого размера доменов (200-400А) однако коэффициент преломления матрицы и домена различны.

Варьированием соотношения компонентов изменяют свойства термоэластопластов достаточно плавно и в широких пределах. Так, с увеличением содержания полистирола от 20 до 80% в термоэластопластах на основе стирола и бутадиена ( молярная масса полибутадиеновых блоков 70 тыс.) прочность при растяжении проходит через максимум при содержании стирола 30%, относительное удлинение уменьшается от 990 до 10%, твердость по Шору возрастает от 66 до 100.это изменение соответствует постепенному переходу от «недовулканизованного каучука» (содержание стирола 15%) к термоэластопласту (20-40% стирола) и, наконец, к термопластичному полимеру (60-80%).

Кроме соотношения компонентов, большое влияние на свойства термоэластопластов оказывает молярная масса блоков, в первую очередь эластомерного. Так, достаточно высокие показатели прочности при растяжении и эластичности реализуются у термоэластопластов на основе полистирола и каучуков, начиная с молярной массы блоков полистирола 7-15 тыс. и блоков каучука 20-80 тыс. Выше этих значений изменение молярной массы блоков в достаточно широких пределах мало сказывается на свойствах термоэластопластов.

При введении в подобные термоэластопласты до 20% гомополимера стирола с молярной массой, близкой к молярной массе полистирольных блоков, прочностные свойства термоэластопластов почти не меняются, однако они резко ухудшаются при введении уже 5% сополимера АВ или гомополимера диена.

Расплавы термоэластопластов характеризуются высокими значениями вязкости.

Свойства некоторых термоэластопластов приведены в таблице.

Смотрите также

Интересное о каучуке
...

Теоретические основы электрохимической коррозии
Металлы составляют одну из основ цивилизации на планете Земля. Их широкое внедрение в промышленное строительство и транспорт произошло на рубеже XVIII-XIX веков. В это время появился первый ...

Разработка энергосберегающей технологии ректификации циклических углеводородов
Процесс ректификации играет ведущую роль среди процессов разделения промышленных смесей. Большая энергоемкость процесса делает поиск оптимальных схем разделения актуальной задачей химическо ...