Нефтяная и химическая промышленность
Страница 1

Освоение новых месторождений, увеличение глубины скважин выдвигают определенные требования к материалам, применяемым для изготовления деталей и узлов нефте- и газопромыслового оборудования и аппаратуры для переработки продуктов нефти.

Высокая удельная прочность алюминиевых сплавов позволяет уменьшить массу бурильного оборудования, облегчить их транспортабельность и обеспечить прохождение глубоких скважин.

Коррозионно-стойкие алюминиевые сплавы дают возможность повысить эксплуатационную надежность бурильных, насосно-компрессорных и нефтегазопроводных труб. Повышенная сопротивляемость коррозионному растрескиванию позволяет применить алюминиевые сплавы при изготовлении емкостей для хранения нефти и ее продуктов.

Основным конструкционным материалом при изготовлении бурильных труб из алюминиевых сплавов является сплав марки Д16.

Высокую стойкость к сырой нефти и некоторым бензинам показали алюминиевые сплавы АМг2, AMr3, АМг5 и АМг6. Из перечисленных магналиевых сплавов наиболее технологичным сплавом для изготовления аппаратов является сплав АМг2, особенно при изготовлении конденсаторов и холодильников на нефтеперегонных заводах.

В США оборудование для нефтяной промышленности изготовляется из алюминиевых сплавов серии Зххх, 5ххх и 6ххх. В конструкции бурового оборудования применяют трубы из сплава 6063. Морские платформы собираются из труб 6061, 6063, а также из высокопрочных сплавов марок 2014 и 7075. Из алюминия АДОО, АДО и АД1 изготовляют емкости, колонны, конденсаторы и т.п. для производства уксусной кислоты, сульфирования жирных спиртов, хлората калия, натриевой и аммиачной селитры, синильной кислоты и т.д.

Химической промышленности рекомендованы алюминиевые сплавы АМц, АМг2, АМгЗ, АМг5 для изготовления сосудов, работающих под давлением при температурах от - 196 до +150 0С.

Из алюминия АДОО, АДО и АД1 изготовляют емкости, колонны, конденсаторы и т.п. для производства уксусной кислоты, сульфирования жирных спиртов, хлората калия, натриевой и аммиачной селитры, синильной кислоты и т.д.

В США в зависимости от условий эксплуатации аппаратуры химической промышленности применяют сплавы серий 1ххх, Зххх, 5ххх. В отдельных случаях для обеспечения наибольшей прочности применяют термически упрочняемые сплавы 2ххх и 7ххх с пониженной коррозионной стойкостью.

Емкости для хранения химических продуктов выполняют из сплавов высокой коррозионной стойкости - 1100 или 3003; сосуды высокого давления - из сплавов 5052 или 6063; тара, цистерны и другие виды оборудования для хранения уксусной кислоты, высокомолекулярных жирных кислот, спиртов и других продуктов - из сплавов 3003, 6061, 6063, 5052; емкости для озоносодержащих растворов удобрений из сплавов 3004; 5052 и 5454; емкости для хранения растворов нитрата аммония из сплавов 1100, 3003, 3004, 5050, 5454, 6061 и 6062.

В настоящее время четвертая часть всего алюминия идет на нужды строительства, столько же потребляет транспортное машиностроение, примерно 17% часть расходуется на упаковочные материалы и консервные банки, 10% - в электротехнике.

Алюминий содержат также многие горючие и взрывчатые смеси. Алюмотол, литая смесь тринитротолуола с порошком алюминия, - одно из самых мощных промышленных взрывчатых веществ. Аммонал - взрывчатое вещество, состоящее из аммиачной селитры, тринитротолуола и порошка алюминия. Зажигательные составы содержат алюминий и окислитель - нитрат, перхлорат. Пиротехнические составы "Звездочки" также содержат порошкообразный алюминий.

Смесь порошка алюминия с оксидами металлов (термит) применяют для получения некоторых металлов и сплавов, для сварки рельсов, в зажигательных боеприпасах.

Алюминий нашел также практическое применение в качестве ракетного топлива. Для полного сжигания 1 кг алюминия требуется почти вчетверо меньше кислорода, чем для 1 кг керосина. Кроме того, алюминий может окисляться не только свободным кислородом, но и связанным, входящим в состав воды или углекислого газа. При "сгорании" алюминия в воде на 1 кг продуктов выделяется 8800 кДж; это в 1,8 раза меньше, чем при сгорании металла в чистом кислороде, но в 1,3 раза больше, чем при сгорании на воздухе. Значит, в качестве окислителя такого топлива можно использовать вместо опасных и дорогостоящих соединений простую воду. Идею использования алюминия в качестве горючего еще в 1924г. предложил отечественный ученый и изобретатель Ф.А. Цандер. По его замыслу можно использовать алюминиевые элементы космического корабля в качестве дополнительного горючего. Этот смелый проект пока практически не осуществлен, зато большинство известных в настоящее время твердых ракетных топлив содержат металлический алюминий в виде тонкоизмельченного порошка. Добавление 15% алюминия к топливу может на тысячу градусов повысить температуру продуктов сгорания (с 2200 до 3200 К); заметно возрастает и скорость истечения продуктов сгорания из сопла двигателя - главный энергетический показатель, определяющий эффективность ракетного топлива. В этом плане конкуренцию алюминию могут составить только литий, бериллий и магний, но все они значительно дороже алюминия.

Страницы: 1 2

Смотрите также

Физико-химические закономерности формирования тонкопленочных металлополимерных систем из газовой фазы
Тонкопленочные металлополимерные материалы (металлизированные полимеры, металлические изделия с тонким полимерным покрытием, многослойные системы и др.), формируемые методами вакуумной техно ...

Самоорганизация полимеров
Известно, что многие макромолекулы, содержащие атомные группы различной химической природы, способны самопроизвольно образовывать сложные трёхмерные ансамбли. Это явление называется самоорга ...

Алкадиены. Каучук
Алкадиены, или диеновые углеводороды, — не­предельные углеводороды, содержащие в углеродной цепи молекулы две двойные связи. ...