Изучение механизмов активации и восстановления азота в растворах комплексов переходных металлов, несомненно, очень важно для понимания механизма действия фермента нитрогеназы и создания химических моделей этого фермента. В этой связи очень интересны последние достижения в изучении структуры окислительно-восстановительных центров фермента.
Фермент нитрогеназа содержится в нескольких видах микроорганизмов. Фермент, выделенный из Azotobacter vinelandii, состоит из двух белков с молекулярной массой 240 000 и ~ 60 000Da. Первый белок (тетрамер из четырех белковых глобул) содержит атомы Mo и Fe в редокс-центрах (MoFe-белок). Второй белок (димер из двух белковых глобул) содержит только атомы железа в виде сульфидного кластера Fe4S4 (Fe-белок). Кластер соединен с белковой молекулой четырьмя тиольными (RS) группами аминокислотных остатков цистеина (Cys). В MoFe-белке имеются два окислительно-восстановительных центра: MoFe-кофактор (активный центр фермента) и P-кластер, содержащий два кубаноподобных кластера Fe4S4, соединенных двумя Cys-группами. Недавно на основании кристаллографических исследований MoFe-белка нитрогеназы из Azotobacter vinelandii предложена структура этих двух центров. Структура кофактора (без дополнительных лигандов) приведена на рис. 1, а. Короткие расстояния Fe_Fe (~ 2,5 Б) между двумя кластерами Fe4S3 и Fe3MoS3 , связанными двумя сульфидными мостиками и третьим лигандом (Y), говорят о возможности взаимодействия Fe_Fe. Предполагается, что три слабые Fe_Fe-связи могут разорваться при взаимодействии с N2 и молекула N2 может быть включена во внутреннюю полость кофактора, замещая связи Fe_Fe связями Fe_N. В таком комплексе создаются условия для переноса нескольких (4, 6) электронов на азот от восстановителя через P-кластер. Атом Mo в рамках этой модели является одним из источников электронов. Очевидно, что Mo не обязательный участник восстановления N2 , поскольку известны и другие нитрогеназы, в которых атом Mo замещен атомами ванадия или железа. Процесс восстановления N2 на молибденсодержащих нитрогеназах включает три основных этапа переноса электронов:
1) восстановление Fe-белка донорами электронов (ферредоксином в клетке или дитионитом Na2S2O4 в колбе);
2) перенос электронов с восстановленного Fe-белка (через P-кластер) на MoFe-белок. Этот процесс зависит от гидролиза магниевой соли аденозинтрифосфата (MgАТФ) до аденозиндифосфата (MgАДФ);
3) перенос электронов на N2 (или другой субстрат), связанный с кофактором.
Суммарная стехиометрия восстановления описывается уравнением
N2 + + 8H+ + 16MgАТФ 2NH3 + H2 +
+ 16MgАДФ + 16Pi (Pi - фосфат-анион)
Роль многоцентровых взаимодействий (участие нескольких атомов металла) в активации молекулярного азота в протонных и апротонных средах в целом согласуется с результатами изучения структуры кофактора и железных кластеров в нитрогеназе [4].
Аэробное окисление углеводов. Биологическое окисление и восстановление
Аэробное окисление углеводов
- основной путь образования энергии для организма. Непрямой - дихотомический и прямой - апотомический.
Прямой путь распада глюкозы – пентозный цикл
– приво ...
Развитие периодического закона. Зависимость свойства элементов от ядра его атома
В первую очередь
стоит сказать, что изучению атомов в химии уделяется огромное внимание со
стороны ученных химиков, как теоретиков, так и практиков. Хотя до нашего
времени и большинство хим ...
Реакции альдегидов и кетонов: присоединение углеродных нуклеофилов
...