Разнообразные варианты хроматографии [1] укладываются в относительно простую схему классификации в зависимости от используемой подвижной фазы и характера межмолекулярных взаимодействий. Поскольку характер взаимодействий может быть очень различным – от чисто ситового эффекта к физической сорбции и далее к хемосорбции, то почти не существует объектов, для разделения которых не удавалось бы найти подходящего сорбента и систем растворителей. Области применения основных вариантов хроматографии в зависимости от молекулярной массы исследуемых соединений показаны на рис. 1.
В области молекулярного анализа органических соединений хроматография преобладает над другими методами разделения, не заменяя их.
Классификация вариантов хроматографии приведена в таблице 1 и на рис. 2. Следует иметь в виду, что в аналитической практике преобладает использование варианта проявительной хроматографии, когда подвижная фаза подается в хроматографическое устройство непрерывно, а разделяемая проба — периодически.
При всем разнообразии вариантов хроматографии практически всегда реализуется общая схема процесса, представленная на рис. 3. Подвижная фаза (газ-носитель или жидкость) непрерывно пропускается через слой гранулированного сорбента, засыпанного в колонку.
В этот поток дозирующим устройством вводится импульсно анализируемая смесь, которая должна быть газообразной или испаряться в дозаторе в случае газовой хроматографии, или растворяться в подвижной фазе в случае жидкостной. Перемещаясь потоком подвижной фазы по колонке, анализируемая смесь разделяется на составляющие ее компоненты: компоненты, сорбирующиеся хуже на данном сорбенте, двигаются быстрее и вымываются из колонки раньше, чем сорбирующиеся лучше.
Расположенный после колонки детектор фиксирует наличие в потоке компонентов; его сигнал, обычно пропорциональный концентрации или количеству компонента, записывается на самопишущем потенциометре (регистраторе) в виде хроматограммы — графика зависимости концентрации (количества от времени). Хроматограмма при полном разделении компонентов состоит из системы колоколобразных кривых, называемых пиками: каждый пик относится к одному или нескольким компонентам и соответствует возрастанию, а затем снижению концентрации в потоке подвижной фазы.
Рис. 1. Области применения основных вариантов хроматографии в зависимости от молекулярной массы исследуемого вещества
Таблица 1. Варианты хроматографии по фазовым состояниям
Подвижная фаза |
Неподвижная фаза |
Название варианта | |
частное |
общее | ||
Газ |
Адсорбент |
Газоадсорбционная |
Газовая хроматография |
Жидкость |
Газожидкостная | ||
Жидкость |
Адсорбент |
Жидкостно-адсорбционная |
Жидкостная хроматография |
Жидкость |
Жидкостно-адсорбционная | ||
Газ или пар в сверхкритическом состоянии |
Адсорбент |
Флюидно-адсорбционная |
Флюидная хроматография |
Жидкость |
Флюидно-жидкостная | ||
Коллоидная система |
Сложная композиция твердых и жидких компонентов |
Полифазная хроматография |
Силикагель и его применение в высокоэффективной жидкостной хроматографии
В современной промышленности и науке особое место среди сорбентов
принадлежит силикагелю, представляющему собой высушенный гель кремниевой кислоты.
По масштабам применения силикагель существ ...
Материал для химического кружка
Изложенный в
дипломной работе материал может быть использован в школьном курсе химии при
подготовке и проведении интегрированных уроков (химия и биология, химия и
экология) или в химическом кружке. ...
Насыщенные альдегиды и кетоны
Альдегиды
и кетоны относятся к карбонильным соединениям (содержат группу >С=О) Они
имеют общую формулу:
для
альдегидов R1=H.
Изомерия
кетонов связана со строением радикалов и с п ...