Разнообразные варианты хроматографии [1] укладываются в относительно простую схему классификации в зависимости от используемой подвижной фазы и характера межмолекулярных взаимодействий. Поскольку характер взаимодействий может быть очень различным – от чисто ситового эффекта к физической сорбции и далее к хемосорбции, то почти не существует объектов, для разделения которых не удавалось бы найти подходящего сорбента и систем растворителей. Области применения основных вариантов хроматографии в зависимости от молекулярной массы исследуемых соединений показаны на рис. 1.
В области молекулярного анализа органических соединений хроматография преобладает над другими методами разделения, не заменяя их.
Классификация вариантов хроматографии приведена в таблице 1 и на рис. 2. Следует иметь в виду, что в аналитической практике преобладает использование варианта проявительной хроматографии, когда подвижная фаза подается в хроматографическое устройство непрерывно, а разделяемая проба — периодически.
При всем разнообразии вариантов хроматографии практически всегда реализуется общая схема процесса, представленная на рис. 3. Подвижная фаза (газ-носитель или жидкость) непрерывно пропускается через слой гранулированного сорбента, засыпанного в колонку.
В этот поток дозирующим устройством вводится импульсно анализируемая смесь, которая должна быть газообразной или испаряться в дозаторе в случае газовой хроматографии, или растворяться в подвижной фазе в случае жидкостной. Перемещаясь потоком подвижной фазы по колонке, анализируемая смесь разделяется на составляющие ее компоненты: компоненты, сорбирующиеся хуже на данном сорбенте, двигаются быстрее и вымываются из колонки раньше, чем сорбирующиеся лучше.
Расположенный после колонки детектор фиксирует наличие в потоке компонентов; его сигнал, обычно пропорциональный концентрации или количеству компонента, записывается на самопишущем потенциометре (регистраторе) в виде хроматограммы — графика зависимости концентрации (количества от времени). Хроматограмма при полном разделении компонентов состоит из системы колоколобразных кривых, называемых пиками: каждый пик относится к одному или нескольким компонентам и соответствует возрастанию, а затем снижению концентрации в потоке подвижной фазы.
Рис. 1. Области применения основных вариантов хроматографии в зависимости от молекулярной массы исследуемого вещества
Таблица 1. Варианты хроматографии по фазовым состояниям
Подвижная фаза |
Неподвижная фаза |
Название варианта | |
частное |
общее | ||
Газ |
Адсорбент |
Газоадсорбционная |
Газовая хроматография |
Жидкость |
Газожидкостная | ||
Жидкость |
Адсорбент |
Жидкостно-адсорбционная |
Жидкостная хроматография |
Жидкость |
Жидкостно-адсорбционная | ||
Газ или пар в сверхкритическом состоянии |
Адсорбент |
Флюидно-адсорбционная |
Флюидная хроматография |
Жидкость |
Флюидно-жидкостная | ||
Коллоидная система |
Сложная композиция твердых и жидких компонентов |
Полифазная хроматография |
Окись этилена
Окись
этилена является одним из наиболее крупнотоннажных продуктов органического
синтеза, получаемых на основе этилена. Производные окиси этилена (гликоли и их
эфиры, этаноламины, поверхнос ...
Простые эфиры целлюлозы
Простые эфиры целлюлозы
С6Н7О2(ОR)n(ОН)3-n
(где n≈2) представляют собой в основном продукты О-алкилирования
целлюлозы. Простые эфиры целлюлозы в настоящее время приобрели большое
пра ...
Экспериментальная часть
Реагенты
и оборудование.
Уравнение
реакции имеет вид:
Реактивы:
N-фенилантраниловая кислота (С13Н11О2N, M=213 г/моль, Тпл=179-1810С) – 3г,
серная кислота (Н2SО4, M=98.08 г/моль, Тпл=-13 ...