Как видно из таблицы 8, минимальные энергозатраты в кипятильниках колонн обеспечиваются при следующих значениях рабочих параметров:
температуре подачи ЭА 80-900С;
расходе ЭА 70 кмоль/час;
уровнях подачи экстрактивного агента и исходной смеси на 3 и 9 тарелки соответственно.
В таблице 9 приведены обобщенные данные зависимости энергозатрат на разделение от температуры экстрактивного агента при его оптимальном расходе.
Таблица 9. Зависимость энергозатрат от расхода ЭА при разных температурах подачи ЭА.
Т ЭА, 0С |
Опт. расход ЭА, кмоль/час |
RЭК |
Энергозотраты, ГДж/час | |
QЭК |
| |||
100 |
70 |
1.13 |
1,136 |
9.901 |
90 |
70 |
1.35 |
1.134 |
9.480 |
80 |
70 |
1,53 |
1.133 |
9.480 |
70 |
70 |
0.94 |
1.133 |
9.481 |
60 |
70 |
0.07 |
1.171 |
9.528 |
В общем, с уменьшением температуры экстрактивного агента флегмовое число уменьшается. Минимальные энергозатраты наблюдаются при расходе 70 кмоль/час и температуре подачи ЭА 900С.
Таким образом, нами были найдены оптимальные параметры работы экстрактивной колонны: температура подачи анилина в колонну, расход экстрактивного агента, уровень ввода ЭА и исходной смеси. Далее, при фиксированных параметрах экстрактивной колонны, мы определили тарелку питания в колонне регенерации анилина. Результаты расчета приведены в табл.10.
Таблица 10. Оптимальное положение тарелки питания в колонне регенерации А.
NF |
Энегозатраты, ГДж/ч |
8 |
9.480 |
9 |
9.480 |
10 |
9.470 |
11 |
9.481 |
Затем, при закрепленных оптимальных параметрах экстрактивного комплекса, мы определили тарелку питания в колонне выделения этилбензола. Результаты представлены в табл.11.
Таблица 11. Оптимальное положение тарелки питания в колонне выделения этилбензола
NF |
Энегозатраты, кДж/ч |
13 |
8.909 |
14 |
8.896 |
15 |
8.781 |
16 |
8.888 |
Самоорганизация полимеров
Известно, что многие макромолекулы, содержащие атомные группы
различной химической природы, способны самопроизвольно образовывать сложные
трёхмерные ансамбли. Это явление называется самоорга ...