Уран
Страница 1

В водных растворах наиболее устойчивы соединения, где уран находится в степенях окисления +4, в особенности +6. В степени окисления +3 он проявляет свойства сильного восстановителя, разлагает воду с образованием водорода; при этом уран окисляется:

U (III) ® U (IV).

Уран в степени окисления +5 склонен к диспропорционированию и устойчивых растворов не образует:

U (V) ® U (IV) + U (VI).

Все гидроксиды урана - U (OH) з, U (OH) 4, UO2 (OH) 2 - плохо растворимы. К плохо растворимым солям урана (во всех степенях окисления) относятся фосфаты, средние карбонаты и оксалаты. Среди фторидов плохо растворимы UFз и UF4, а UO2F2 обладает заметной растворимостью. Обладающий большой летучестью гексафторид урана, UF6 и промежуточные фториды (UF5, U2F9, U4F17) гидролизуются при соприкосновении с водой или ее парами с образованием UO2F2 и тетрафторида.

Фториды урана склонны образовывать комплексные соединения. Двойные фториды можно получить не только методами "сухой химии" (например, сплавлением), но и проведением реакций в растворах; часть из них кристаллизуется без воды, например, NH4UF5. Важную роль играют процессы растворения осадков труднорастворимых соединений и не только в кислотах, что в сущности является одним из основных приемов гидрометаллургии (последовательные процессы осаждения и растворения). Например, многие осадки соединений урана, в частности, тетрафторид урана, можно растворить в водных растворах оксалата или карбоната аммония с образованием комплексных соединений, в частности

[UO2 (C2O4) 2] 2 - ; [UO2 (CO3) 3] 4 - .

В согласии с основными принципами равновесий в растворах - непрерывностью и ступенчатостью - возможно существование и других комплексных форм с меньшим и даже большим мольным отношением числа лигандов к атомам комплексообразователя (n). Есть данные об образовании карбонатного комплекса с n = 2 и оксалатного с n = 3, то есть, типы этих комплексов одинаковы.

В некоторых технологических операциях используют способность урана пребывать в состояниях с различными степенями окисления. Например, U (IV) во многих отношениях напоминает торий, но свойства U (VI) уже совершенно иные, что может в ряде случаев обеспечить либо коллективный, либо селективный процесс.

Восстановителями урана (VI) могут служить различные металлы или их амальгамы (Zn, Cd, Bi, Mg, Al), соли Ti (III), Sn (II) и др. Возможно электрохимическое восстановление с помощью источника постоянного тока. Уран проявляет свойства амфотерности, выступая в роли "кислотообразующего элемента" (в основном, в степени окисления +6). Для удобства при проведении стехиометрических расчетов и для наглядности амфотерность урана (VI) можно проиллюстрировать следующим образом. Рассмотрим процессы, протекающие при титровании растворимой соли щелочью:

UO22+ + 2OH - ® UO2 (OH) 2; UO2 (OH) 2 «H2UO4,поскольку U (VI) амфотерен. (Знак «здесь и дальше обозначает фразу "то же самое, что и").

2NaOH + H2UO4 ® Na2UO4 + 2H2O.

(избыток)

Соединение NaUO4 представляет собой уранат натрия; уран в нем выполняет роль "кислотообразующего элемента". В действительности в данных обстоятельствах образуется не уранат, а полиуранаты, которые можно выразить общей формулой

хNaO · yUO3 · zHO.

Наиболее типичной и представительной формой, которая будет преобладать в достаточно "старом" осадке (а нужно добавить, что абсолютно все полиуранаты - нерастворимые соединения), является димер, диуранат (х = 1; у = 2): Na2U2O7 · zH2O. То же самое можно показать, применяя графы ("структурные формулы") молекул. Нелишне напомнить, что граф молекулы гипотетической "урановой кислоты" такой же, как и у серной:

Страницы: 1 2