Жидкостная хроматография представляет собой группу вариантов хроматографии, в которых подвижной фазой является жидкость.
Одним из вариантов жидкостной хроматографии является жидкостно-адсорбционная хроматография – это метод, в котором неподвижной фазой является твердый адсорбент.
Хотя жидкостная хроматография была открыта раньше газовой, она лишь во второй половине ХХ века вступила в период исключительно интенсивного развития. В настоящее время по степени разработки теории хроматографического процесса и техники инструментального оформления, по эффективности и скорости разделения она вряд ли уступает методу газохроматографического разделения. Однако каждый из этих двух основных видов хроматографии имеет свою преимущественную область применения. Если газовая хроматография пригодна главным образом для анализа, разделения и исследования химических веществ с молекулярной массой 500 – 600, то жидкостная хроматография может быть использована для веществ с молекулярной массой от нескольких сот до нескольких миллионов, включая предельно сложные макромолекулы полимеров, белков и нуклеиновых кислот. Вместе с тем противопоставление различных хроматографических методов по своей сути лишено здравого смысла, так как хроматографические методы удачно дополняют друг друга, и к самой задаче конкретного исследования надо подходить по-иному, а именно, какой хроматографический метод позволяет решить ее с большей скоростью, информативностью и с меньшими затратами.
Как и в газовой хроматографии, в современной жидкостной хроматографии применяют детекторы, позволяющие непрерывно фиксировать концентрацию определяемого вещества в потоке жидкости, вытекающей из колонки.
Единого универсального детектора для жидкостной хроматографии не существует. Поэтому в каждом конкретном случае следует подбирать наиболее подходящий детектор. Наибольшее распространение получили ультрафиолетовый, рефрактометрический, микроадсорбционный и транспортный пламенно-ионизационный детекторы.
Спектрометрические детекторы. Детекторы этого типа являются высокочувствительными селективными приборами, позволяющими определять в потоке жидкой фазы весьма малые концентрации веществ. Их показания мало зависят от колебаний температуры и других случайных изменений среды. Одна из важных особенностей спектрометрических детекторов заключается в прозрачности большинства применяющихся в жидкостно-адсорбционной хроматографии растворителей в рабочей области длин волн.
Чаще всего применяют поглощение в УФ, реже в ИК области. В УФ области применяют приборы, работающие в широком диапазоне – от 200 нм до видимой части спектра, либо на определенных длинах волн, чаще всего на 280 и 254 нм. В качестве источников излучения применяются ртутные лампы низкого давления (254 нм), среднего давления (280 нм) и соответствующие фильтры.
Микроадсорбционные детекторы. В основе действия микроадсорбционных детекторов лежит выделение теплоты при адсорбции вещества на адсорбенте, которым заполнена ячейка детектора. Измеряется, однако, не теплота, а температура адсорбента, до которой он нагревается в результате адсорбции.
Микроадсорбционный детектор – достаточно высокочувствительный инструмент. Его чувствительность зависит прежде всего от теплоты адсорбции.
Микроадсорбционные детекторы являются универсальными, пригодными для детектирования как органических, так и неорганических веществ. Однако на них трудно получить достаточно четкие хроматограммы, особенно при неполном разделении компонентов смеси.
Золь-Гель технология
Золь-гель технология
(гелевая технология) (англ. The sol-gel
process) - технология получения
материалов с определенными химическими и физико-механическими свойствами,
включающая получение ...
Разработка основ технологии и оборудования для электрохимического производства нитрата графита
...
История открытия редких химических элементов
Элементы побочной подгруппы 3-ей группы и семейство, состоящих из 14 F-элементов с порядковыми номерами от 58 до 71,
весьма близки к друг другу по своим химическим и физико-химическим свойств ...