Г.К. Боресков убедительно доказал, что под влиянием реакционной среды свежие катализаторы изменяют свой состав и структуру, достигая стационарного состава и соответствующей ему удельной каталитической активности. Считается и ныне, что подавляющее большинство промышленных каталитических процессов осуществляется в стационарных условиях.
Начиная с 1970-х годов, химики все больше стали обращать внимание на то, что те же самые причины воздействия реакционной среды на катализаторы, которые обусловили появление кинетики стационарных процессов, оказываются ответственными и за наличие нестационарных режимов работы каталитических систем. Было установлено, что в одних случаях стационарное состояние катализаторов не реализуется из-за блокировки их поверхности плотным слоем какого-либо адсорбата, скорость образования которого выше скорости движения стационарности. В других случаях в ходе реакций было зафиксировано несколько нестационарных режимов со скачкообразными переходами между ними. Открыто и изучено множество автоколебательных процессов, свидетельствующих об особом типе нестационарности.
Исследователи приходят к выводам, что стационарный режим, стабилизация которого казалась залогом высокой эффективности промышленного процесса, является лишь частным случаем нестационарного режима. С 1970-х годов обнаружено много случаев нестационарных режимов, способствующих интенсификации реакций. Появились работы, описывающие искусственно создаваемые нестационарные режимы, при которых оказывается возможным не только легче реализовать оптимальные условия реакций, но и достигнуть улучшения качества продуктов (например, более эффективного распределения молекулярных весов в полимерах).
Одним из ведущих звеньев в развитии нестационарной кинетики является теория саморазвития открытых каталитических систем. Первой прикладной областью, где теория развития открытых каталитических систем может быть широко и эффективно использована, являются уже исследованные в лабораторных условиях процессы, в основу которых положено энергетическое сопряжение реакций, в том числе таких, на которые наложены строгие термодинамические ограничения. В этом случае одна реакция помогает другой; в системе развиваются процессы, направленные против равновесия, сама же система приобретает динамическую устойчивость, или «устойчивое не равновесие». Этот принцип использован для осуществления ряда реакций, которые пока не были реализованы другими путями.
В результате развития учения о химических процессах химия теперь имеет реальные предпосылки для решения таких общих задач, как:
моделирование и интенсификация фотосинтеза;
фотолиз воды с получением водорода как самого эффективного топлива;
промышленный синтез широкого спектра органических продуктов и в первую очередь метанола, этанола, формальдегида и муравьиной кислоты, на основе углекислого газа;
промышленный синтез многочисленных фтор материалов.
Это обстоятельство является залогом успешного претворения в жизнь задач по созданию малоотходных, безотходных и энергосберегающих промышленных процессов, рачительного использования каждого килограмма сырья и каждого киловатта энергии для производства необходимых материалов.
Термоэластопласты, фторкаучуки, полисульфон
Значение
полимеров и материалов на их основе их композиций в современной технике и
народном хозяйстве очень велико. Сложно представить хотя бы одну область
человеческой жизнедеятельности, г ...
Влияние добавок на устойчивость пероксида водорода в водных растворах
В настоящее время
пероксид водорода H2O2 находит широкое применение,
особенно в медицине, где его используют в качестве:
- антисептика в
концентрации 3%;
- стерилизующего
агента в ко ...
Фазовые равновесия в системе MgS-Y2S3
Соединения с участием
РЗЭ остаются по прежнему обширным резервом для создания новых материалов.
Возможно создание материалов с уникальными, заранее заданными свойствами.
Взаимодействие в
...